Abstract
Imagine a planet very much like the Earth, with similar size, rotation rate and inclination of rotation axis, possessing an atmosphere and a solid surface, but lacking oceans and dense clouds of liquid water. We might expect such a desert planet to be dominated by large variations in day–night and winter–summer weather. Dust storms would be common. Observations and simulations of martian climate confirm these expectations and provide a wealth of detail that can help resolve problems of climate evolution.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Zoocentrism in the weeds? Cultivating plant models for cognitive yield
Biology & Philosophy Open Access 05 September 2020
-
Dust tides and rapid meridional motions in the Martian atmosphere during major dust storms
Nature Communications Open Access 30 January 2020
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout





References
Zurek, R. et al. in Mars (eds Kieffer, H. H., Jakosky, B. M., Snyder, C. W. & Matthews, M. S.) 835–933 (Univ. Arizona Press, Tucson, 1992).
James, P., Kieffer, H. & Paige, D. in Mars (eds Kieffer, H. H., Jakosky, B. M., Snyder, C. W. & Matthews, M. S.) 934–968 (Univ. Arizona Press, Tucson, 1992).
Gierasch, P. & Goody, R. The effect of dust on the temperature of the Mars atmosphere. J. Atmos. Sci. 29, 400–402 (1972).
Kahn, R., Martin, T., Zurek, R. & Lee, S. in Mars (eds Kieffer, H. H., Jakosky, B. M., Snyder, C. W. & Matthews, M. S.) 1017–1053 (Univ. Arizona Press, Tucson, 1992).
Seiff, A. & Kirk, D. Structure of the atmosphere of Mars in summer at mid-latitudes. J. Geophys. Res. 82, 4364–4378 (1977).
Schofield, J. et al. The Mars Pathfinder Atmospheric Structure Investigation/Meterology (ASI/MET) experiment. Science 278, 1752–1758 (1997).
Martin, T. & Kieffer, H. Thermal infrared measurements of the martian atmosphere 2. The 15 μm band measurements. J. Geophys. Res. 84, 2843–2852 (1979).
Wilson, R. & Richardson, M. The martian atmosphere during the Viking mission: infrared measurements of atmospheric temperatures revisited. Icarus 145, 555–579 (2000).
Smith, M. et al. TES observations of atmospheric thermal structure and aerosol distribution during MGS mapping. J. Geophys. Res. 106 (in the press).
Clancy, R. et al. An intercomparison of ground-based millimeter, MGS TES, and Viking atmospheric temperature measurements: seasonal and interannual variability of temperatures and dust loading in the global Mars atmosphere. J. Geophys. Res. 105, 9553–9571 (2000).
Hinson, D. et al. Initial results from radio occultation measurements with Mars Global Surveyor. J. Geophys. Res. 104, 26997–27012 (1999).
Tillman, J., Johnson, N., Guttorp, P. & Percival, D. The martian annual pressure cycle: years without great dust storms. J. Geophys. Res. 98, 10963–10971 (1993).
Lewis, S. et al. A climate database for Mars. J. Geophys. Res. 104, 24177–24194 (1999).
Haberle, R. et al. Mars atmospheric dynamics as simulated by the NASA/Ames general circulation model, 1. The zonal-mean circulation. J. Geophys. Res. 102, 13301–13311 (1993).
Wilson, J. & Hamilton, K. Comprehensive model simulation of thermal tides in the martian atmosphere. J. Atmos. Sci. 53, 1290–1326 (1996).
Forget, F. et al. Improved general circulation models of the Martian atmosphere from the surface to above 80 km. J. Geophys. Res. 104, 24156–24175 (1999).
Mintz, Y. in The Atmospheres of Mars and Venus (eds Kellogg, W. & Sagan, C.) NAS-NRC Publication 944, 107–146 (National Research Council, Washington DC, 1961).
Santee, M. & Crisp, D. Thermal structure and dust loading of the martian atmosphere during late summer: Mariner 9 revisited. J. Geophys. Res. 98, 3261–3279 (1993).
Hartmann, D. Global Physical Climatology 140–143 (Academic, San Diego, 1994).
Conrath, B. et al. Mars Global Surveyor Thermal Emission Spectrometer (TES) observations: atmospheric temperatures during aerobraking and science phasing. J. Geophys. Res. 104, 9509–9519 (1999).
Thomas, P., Veverka, J., Gineris, D. & Wong, L. “Dust” streaks on Mars. Icarus 49, 398–415 (1984).
Greeley, R., Skypeck, A. & Pollack, J. Martian aeolian features and deposits: comparisons with general circulation model results. J. Geophys. Res. 98, 3183–3196 (1993).
Barnes, J. Midlatitude disturbances in the Martian atmosphere: a second Mars year. J. Atmos. Sci. 38, 225–234 (1981).
Barnes, J. Linear baroclinic instability in the Martian atmosphere. J. Atmos. Sci. 41, 1536–1550 (1984).
Hollingsworth, J. et al. Orographic control of storm zones on Mars. Nature 380, 413–416 (1996).
Gierasch, P., Thomas, P., French, R. & Veverka, J. Spiral clouds on Mars: a new atmospheric phenomenon. Geophys. Res. Lett. 6, 405–408 (1979).
James, P., Hollingsworth, J., Wolff, J. & Lee, S. North polar dust storms in early spring on Mars. Icarus 38, 64–73 (1999).
Conrath, B. Planetary-wave structure in the Martian atmosphere. Icarus 48, 246–255 (1981).
Hollingsworth, J. & Barnes, J. Forced stationary planetary waves in Mars's winter atmosphere. J. Atmos. Sci. 53, 428–448 (1996).
Briggs, G. & Leovy, C. Mariner 9 observations of the Mars north polar hood. Bull. Am. Meteorol. Soc. 55, 278–296 (1972).
Zurek, R. Diurnal tide in the martian atmosphere. J. Atmos. Sci. 33, 321–337 (1976).
Zurek, R. & Leovy, C. Thermal tides in the dusty Martian atmosphere: a verification of theory. Science 213, 437–439 (1981).
Hinson, D., Hollingsworth, J., Wilson, R. & Tyler, G. Radio occultation measurements of forced atmospheric waves on Mars. J. Geophys. Res. 106 (in the press).
Tillman, J. Mars global atmospheric oscillations: annually synchronized, transient normal mode oscillations and the triggering of global dust storms. J. Geophys. Res. 93, 9433–9451 (1988).
Keating, G. et al. Evidence for large global diurnal Kelvin wave in the Mars upper atmosphere. Bull. Am. Astron. Soc. 32, Abstr. 50:02 (2000).
Zurek, R. & Haberle, R. Zonally symmetric response to atmospheric tidal forcing in the dusty Martian atmosphere. J. Atmos. Sci. 45, 2469–2485 (1988).
Murphy, J., Leovy, C. & Tillman, J. Observations of martian surface winds at the Viking Lander 1 site. J. Geophys. Res. 95, 14555–14576 (1990).
Joshi, M., Lewis, S., Read, P. & Catling, D. Western boundary currents in the atmosphere of Mars. Nature 367, 548–551 (1994).
Greeley, R., Lancaster, N., Lee, S. & Thomas, P. in Mars (eds Kieffer, H. H., Jakosky, B. M., Snyder, C. W. & Matthews, M. S.) 835–933 (Univ. Arizona Press, Tucson, 1992).
Ryan, J., Sharman, R. & Lucich, R. Local Mars dust storm generation mechanism. Geophys. Res. Lett. 8, 899–901 (1981).
Arvidson, R. et al. Three Mars years: Viking lander imaging observations. Science 222, 463–468 (1983).
Peterfreund, A. & Kieffer, H. Thermal and infrared properties of the martian atmosphere. 3: Local dust clouds. J. Geophys. Res. 84, 2853–2862 (1979).
Cantor, B., James, P., Caplinger, M. & Wolff, M. Martian dust storms: 1999 Mars Orbiter Camera observations. J. Geophys. Res. 106 (in the press).
Ryan, J. & Carroll, J. Dust devil wind velocities: mature state. J. Geophys. Res. 75, 531–541 (1970).
Thomas, P. & Gierasch, P. Dust devils on Mars. Science 230, 175–177 (1985).
Leovy, C., Zurek, R. & Pollack, J. Mechanisms of Mars dust storms. J. Atmos. Sci. 30, 749–762 (1973).
Leovy, C., Tillman, J., Guest, W. & Barnes, J. in Recent Advances in Planetary Meteorology (ed G. Hunt) 69–84 (Cambridge Univ. Press, Cambridge, 1985).
Anderson, E. & Leovy, C. Mariner 9 television limb observations of dust and ice hazes on Mars. J. Atmos. Sci. 35, 723–234 (1978).
Smith, M., Pearl, J., Conrath, B. & Christensen, P. Mars Global Surveyor Thermal Emission Spectrometer (TES) observations of dust opacity during aerobraking and science phasing. J. Geophys. Res. 105, 9539–9552 (2000).
Murphy, J. et al. Three-dimensional numerical simulation of Martian global dust storms. J. Geophys. Res. 100, 26357–26376 (1995).
Zurek, R. & Martin, L. Interannual variability of planet-encircling dust storms on Mars. J. Geophys. Res. 98, 3247–3259 (1993).
Haberle, R. Interannual variability of global dust storms on Mars. Science 234, 459–461 (1986).
Anderson, F. et al. Assessing the Martian surface distribution of aeolian sand using a Mars general circulation model. J. Geophys. Res. 104, 18991–19002 (1999).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Leovy, C. Weather and climate on Mars. Nature 412, 245–249 (2001). https://doi.org/10.1038/35084192
Issue Date:
DOI: https://doi.org/10.1038/35084192
This article is cited by
-
Mars weather data analysis using machine learning techniques
Earth Science Informatics (2021)
-
Low-density multi-fan wind tunnel design and testing for the Ingenuity Mars Helicopter
Experiments in Fluids (2021)
-
Dust tides and rapid meridional motions in the Martian atmosphere during major dust storms
Nature Communications (2020)
-
Zoocentrism in the weeds? Cultivating plant models for cognitive yield
Biology & Philosophy (2020)
-
Southern Martian winter weather associated with baroclinic topography forced Rossby waves: analysing by Global Mars Multiscale Model
Astrophysics and Space Science (2019)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.