Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress
  • Published:

Surface-to-air signals

Abstract

Powerful volatile regulators of gene expression, pheromones and other airborne signals are of great interest in biology. Plants are masters of volatile production and release, not just from flowers and fruits, but also from vegetative tissues. The controlled release of bouquets of volatiles from leaves during attack by herbivores helps plants to deter herbivores or attract their predators, but volatiles have other roles in development and in the control of defence gene expression. Some of these roles may include long-distance signalling within and perhaps between plants.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Volatile regulators implicated in plant defence and plant-to-plant information transfer.
Figure 2: Communicating danger with airborne signals.

Similar content being viewed by others

References

  1. Bleeker, A. B. & Kende, H. Ethylene: a gaseous signal molecule in plants. Ann. Rev. Cell Dev. Biol. 16, 1–18 (2000).

    Article  Google Scholar 

  2. Walling, L. L. The myriad plant responses to herbivores. J. Plant Growth Reg. 19, 195–216 (2000).

    CAS  Google Scholar 

  3. Turlings, T. C. J & Tumlinson, J. H. Systemic release of chemical signals by herbivore-injured corn. Proc. Natl Acad. Sci. USA 89, 8399–8402 (1992).

    Article  ADS  CAS  Google Scholar 

  4. Alborn, H. T. et al. An elicitor of plant volatiles from beet armyworm oral secretion. Science 276, 945–949 (1997).

    Article  CAS  Google Scholar 

  5. Kessler, A. & Baldwin, I. T. Defensive function of herbivore-induced plant volatile emissions in nature. Science 291, 2141–2144 (2001).

    Article  ADS  CAS  Google Scholar 

  6. De Moraes, C. M., Mescher, M. C. & Tumlinson, J. H. Caterpillar-induced nocturnal plant volatiles repel conspecific females. Nature 410, 577–580 (2001).

    Article  ADS  CAS  Google Scholar 

  7. Dicke, M. & Bruin, J. (eds) Chemical information transfer between wounded and unwounded plants. Biochem. Syst. Ecol. 29 (2001).

  8. Pickett, J. A. & Poppy, G. M. Switching on plant genes by external chemical signals. Trends Plant Sci. 6, 137–139 (2001).

    Article  CAS  Google Scholar 

  9. Knoester, M. et al. Ethylene-insensitive tobacco lacks nonhost resistance against soil-borne fungi. Proc. Natl Acad. Sci. USA 95, 1933–1937 (1998).

    Article  ADS  CAS  Google Scholar 

  10. Shulaev, V., Silverman, P. & Raskin, I. Airborne signalling by methyl salicylate in plant pathogen resistance. Nature 385, 718–721 (1997).

    Article  ADS  CAS  Google Scholar 

  11. Creelman, R. A. & Mullet, J. E. Biosynthesis and action of jasmonates in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48, 355–387 (1997).

    Article  CAS  Google Scholar 

  12. Reymond, P. & Farmer, E. E. Jasmonate and salicylate as global signals for defense gene expression. Curr. Opin. Plant Biol. 1, 404–411 (1998).

    Article  CAS  Google Scholar 

  13. Seo, H. S. et al. Jasmonic acid carboxyl methyltransferase: a key enzyme for jasmonate-regulated plant responses. Proc. Natl Acad. Sci. USA 98, 4788–4793 (2001).

    Article  ADS  CAS  Google Scholar 

  14. Farmer, E. E. & Ryan, C. A. Interplant communication: airborne methyl jasmonate induces synthesis of proteinase inhibitors in plant leaves. Proc. Natl Acad. Sci. USA 87, 7713–7716 (1990).

    Article  ADS  CAS  Google Scholar 

  15. Bruin, J., Sabelis, M. W. & Dicke, M. Do plants tap SOS signals from their infested neighbours? Trends Ecol. Evol. 10, 167–170 (1995).

    Article  CAS  Google Scholar 

  16. Shonle, I. & Bergelson, J. Interplant communication revisited. Ecology 76, 2660–2663 (1995).

    Article  Google Scholar 

  17. Karban, R., Baldwin, I. T., Baxter, K. J., Laue, J. G. & Felton, G. W. Communication between plants: induced resistance in wild tobacco plants following clipping of neighboring sagebrush. Oecologia 125, 66–71 (2000).

    Article  ADS  CAS  Google Scholar 

  18. Bruin, J., Dicke, M. & Sabelis, M. W. Plants are better protected against spider-mites after exposure to volatiles from infested conspecifics. Experentia 48, 525–529 (1992).

    Article  CAS  Google Scholar 

  19. Arimura, G.-I. et al. Herbivory-induced volatiles elicit defense genes in lima bean leaves. Nature 406, 512–515 (2000).

    Article  ADS  CAS  Google Scholar 

  20. Koch, T., Bandemer, K. & Boland, W. Biosynthesis of cis-jasmone: a pathway for the inactivation and the disposal of the plant stress hormone jasmonic acid to the gas phase? Helv. Chim. Acta 80, 838–850 (1997).

    Article  CAS  Google Scholar 

  21. Birkett, M. A. et al. New roles for cis-jasmone as an insect semiochemical and in plant defense. Proc. Natl Acad. Sci. USA 97, 9329–9334 (2000).

    Article  ADS  CAS  Google Scholar 

  22. Loreto, F. & Sharkey, T. D. Isoprene emission by plants is affected by transmissible wound signals. Plant Cell Environ. 16, 563–570 (1993).

    Article  CAS  Google Scholar 

  23. Logan, B. A., Monson, R. K. & Potosnak, M. J. Biochemistry and physiology of foliar isoprene production. Trends Plant Sci. 5, 477–481 (2000).

    Article  CAS  Google Scholar 

  24. Baldwin, I. T. & Schultz, J. C. Rapid changes in tree leaf chemistry induced by damage: evidence for communication between plants. Science 221, 277–279 (1983).

    Article  ADS  CAS  Google Scholar 

  25. Rhoades, D. F. in Plant Resistance to Insects (ed. Hedin, P.) 55–68 (Am Chem. Soc., Washington DC, 1983).

    Book  Google Scholar 

  26. Haujioka, E., Suomela, J. & Neuvonen, S. Long-term inducible resistance in birch foliage: triggering cues and efficacy on a defoliator. Oecologia 65, 363–369 (1985).

    Article  ADS  Google Scholar 

  27. Fujiwara, M., Oku, H. & Shiraishi, T. Involvement of volatile substances in systemic resistance of barley against Erysiphe graminis f. sp. hordei induced by pruning leaves. J. Phytopath. 120, 81–84 (1987).

    Article  Google Scholar 

  28. Dolch, R. & Tscharntke, T. Defoliation of alders (Alnus glutinosa) affects herbivory by leaf beetles on undamaged neighbours. Oecologia 125, 504–511 (2000).

    Article  ADS  Google Scholar 

  29. Rhoades, D. F. Pheromonal communication between plants. Rec. Adv. Phytochem. 19, 195–218 (1985).

    CAS  Google Scholar 

  30. Croft, K. P. C., Jüttner, F. & Sluzarenko, A. J. Volatile products of the lipoxygenase pathway evolved from Phaseolus vulgaris (L.) leaves inoculated with Pseudomonas syringae pv phaseolicola . Plant Physiol. 101, 13–24 (1993).

    Article  CAS  Google Scholar 

  31. Lyr, H. & Banasiak, L. Alkenals, volatile defense substances in plants, their properties and activities. Acta Phytopath. Acad. Sci. Hung. 18, 3–12 (1983).

    CAS  Google Scholar 

  32. Zeringue, H. J. Jr Effects of C6-C10 alkenals and alkanals on eliciting a defense response in the developing cotton boll. Phytochem. 31, 2305–2308 (1992).

    Article  CAS  Google Scholar 

  33. Bate, N. J. & Rothstein, S. J. C6-volatiles derived from the lipoxygenase pathway induce a subset of defense-related genes. Plant J. 16, 561–569 (1998).

    Article  CAS  Google Scholar 

  34. Vollenweider, S., Weber, H., Stolz, S., Chételat, A. & Farmer, E. E. Fatty acid ketodienes and fatty acid ketotrienes: Michael addition acceptors that accumulate in wounded and diseased Arabidopsis leaves. Plant J. 24, 467–476 (2000).

    Article  CAS  Google Scholar 

  35. Thaler, J. S. Jasmonate-inducible plant defences cause increased parasitism of herbivores. Nature 399, 686–688 (1999).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward E. Farmer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farmer, E. Surface-to-air signals. Nature 411, 854–856 (2001). https://doi.org/10.1038/35081189

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35081189

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing