Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

DNA transport in bacteria

Key Points

  • DNA transport is important for several processes in bacteria, including chromosome segregation, conjugation, phage infection and assembly, and transformation

  • SpoIIIE-like proteins comprise an important family of DNA transporters that act to move chromosomal DNA out of closing cell division septa.

  • This provides an important final step contributing to the fidelity of chromosome segregation.

  • SpoIIIE-like proteins might also couple chromosome segregation to other events during division, including closure of the division septum and resolution of chromosome dimers (in circular chromosomes).

  • Proteins related to SpoIIIE are also involved in DNA transfer from donor to recipient cells during conjugation (mating).

  • DNA transport probably involves ATP hydrolysis and might occur by a mechanism similar to DNA translocation by hexameric ring helicases.

  • Some important problems remain, including the directionality of transfer, how ATP hydrolysis is coupled to movement of the DNA, and how transfer complexes are generated and resolved.

Abstract

DNA transport is important in various biological contexts — particularly chromosome segregation and intercellular gene transfer. Recently, progress has been made in understanding the function of a family of bacterial proteins involved in DNA transfer, and we focus here on one of the best-understood members, SpoIIIE. Studies of SpoIIIE-like proteins show that they might couple DNA transport to processes such as cell division, conjugation (mating) and the resolution of chromosome dimers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sporulation and the role of SpoIIIE.
Figure 2: Domain structure of SpoIIIE and related proteins.
Figure 3: FtsK and the resolution of chromosome dimers.
Figure 4: DNA tracking assay for SpoIIIE.
Figure 5: Topological problems of chromosome–SpoIIIE interaction and the problem of directionality.

Similar content being viewed by others

References

  1. Wu, L. J. & Errington, J. Bacillus subtilis SpoIIIE protein required for DNA segregation during asymmetric cell division. Science 264, 572–575 (1994).

    Article  CAS  Google Scholar 

  2. Wu, L. J., Lewis, P. J., Allmansberger, R., Hauser, P. M. & Errington, J. A conjugation-like mechanism for prespore chromosome partitioning during sporulation in Bacillus subtilis. Genes Dev. 9, 1316–1326 (1995).References 1 and 2 report the discovery of the chromosome segregation function of SpoIIIE.

    Article  CAS  Google Scholar 

  3. Wu, L. J. & Errington, J. Septal localization of the SpoIIIE chromosome partitioning protein in Bacillus subtilis. EMBO J. 16, 2161–2169 (1997).

  4. Bath, J., Wu, L. J., Errington, J. & Wang, J. C. Role of Bacillus subtilis SpoIIIE in DNA transport across the mother cell–prespore division septum. Science 290, 995–997 (2000).Demonstration of DNA tracking by the SpoIIIE protein in vitro.

    Article  CAS  Google Scholar 

  5. Foulger, D. & Errington, J. The role of the sporulation gene spoIIIE in the regulation of prespore-specific gene expression in Bacillus subtilis. Mol. Microbiol. 3, 1247–1255 (1989).

    Article  CAS  Google Scholar 

  6. Sharpe, M. E. & Errington, J. Postseptational chromosome partitioning in bacteria. Proc Natl Acad Sci USA 92, 8630–8634 (1995) .Demonstration that SpoIIIE has a general role in chromosome segregation.

    Article  CAS  Google Scholar 

  7. Britton, R. A. & Grossman, A. D. Synthetic lethal phenotypes caused by mutations affecting chromosome partitioning in Bacillus subtilis. J. Bacteriol. 181, 5860–5864 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Begg, K. J., Dewar, S. J. & Donachie, W. D. A new Escherichia coli cell division gene, ftsK. J. Bacteriol. 177, 6211–6222 (1995).Discovery of the cell division function of FtsK protein.

    Article  CAS  Google Scholar 

  9. Diez, A. A., Farewell, A., Nannmark, U. & Nyström, T. A mutation in the ftsK gene of Escherichia coli affects cell–cell separation, stationary-phase survival, stress adaptation, and expression of the gene encoding the stress protein UspA. J. Bacteriol. 179, 5878–5883 (1997).

    Article  CAS  Google Scholar 

  10. Wang, L. & Lutkenhaus, J. FtsK is an essential cell division protein that is localized to the septum and induced as part of the SOS response. Mol. Microbiol. 29, 731–740 (1998).

    Article  CAS  Google Scholar 

  11. Yu, X.-C., Tran, A. H., Sun, Q. & Margolin, W. Localization of cell division protein FtsK to the Escherichia coli septum and identification of a potential N-terminal targeting domain. J. Bacteriol. 180, 1296–1304 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Sharp, M. D. & Pogliano, K. An in vivo membrane fusion assay implicates SpoIIIE in the final stages of engulfment during Bacillus subtilis sporulation. Proc Natl Acad Sci USA 96, 14553–14558 (1999).Demonstration of the membrane fusion function of SpoIIIE protein during sporulation.

    Article  CAS  Google Scholar 

  13. Errington, J. Bacillus subtilis sporulation: regulation of gene expression and control of morphogenesis. Microbiol. Rev. 57, 1–33 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Pogliano, K. et al. A vital stain for studying membrane dynamics in bacteria: a novel mechanism controlling septation during Bacillus subtilis sporulation. Mol. Microbiol. 31, 1149–1159 (1999).

    Article  CAS  Google Scholar 

  15. Yu, X.-C., Weihe, E. K. & Margolin, W. Role of the C terminus of FtsK in Escherichia coli chromosome segregation. J. Bacteriol. 180, 6424–6428 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Liu, G., Draper, G. C. & Donachie, W. D. FtsK is a bifunctional protein involved in cell division and chromosome localization in Escherichia coli. Mol. Microbiol. 29, 893–903 (1998).

    Article  CAS  Google Scholar 

  17. Steiner, W., Liu, G., Donachie, W. D. & Kuempel, P. The cytoplasmic domain of FtsK protein is required for resolution of chromosome dimers. Mol. Microbiol. 31, 579–583 (1999).Unexpected finding of a role for FtsK in the resolution of chromosome dimers.

    Article  CAS  Google Scholar 

  18. Recchia, G. D., Aroyo, M., Wolf, D., Blakely, G. & Sherratt, D. J. FtsK dependent and independent pathways of Xer site-specific recombination. EMBO J. 18, 5724–5734 (1999).

    Article  CAS  Google Scholar 

  19. Barre, F.-X. et al. FtsK functions in the processing of a Holliday junction intermediate during bacterial chromosome segregation. Genes Dev. 14, 2976–2988 (2000).

    Article  CAS  Google Scholar 

  20. Blakely, G., Colloms, S., May, G., Burke, M. & Sherratt, D. J. Escherichia coli XerC recombinase is required for chromosomal segregation at cell division. New Biol 3, 789–798 (1991).

    CAS  PubMed  Google Scholar 

  21. Kuempel, P. L., Henson, J. M., Dircks, L., Tecklenburg, M. & Lim, D. F. dif, a recA-independent recombination site in the terminus region of the chromosome of Escherichia coli. New Biol 3, 799–811 (1991).

    CAS  PubMed  Google Scholar 

  22. Sciochetti, S. A., Piggot, P. J., Sherratt, D. J. & Blakely, G. The ripX locus of Bacillus subtilis encodes a site-specific recombinase involved in proper chromosome partitioning. J. Bacteriol. 181, 6053–6062 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Lemon, K. P., Kurster, I. & Grossman, A. D. Effects of replication termination mutants in chromosome partitioning in Bacillus subtilis. Proc Natl Acad Sci USA 98, 212–217 (2001).

    CAS  PubMed  Google Scholar 

  24. Sciochetti, S. A. & Piggot, P. J. A tale of two genomes: resolution of dimeric chromosomes in Escherichia coli and Bacillus subtilis. Res. Microbiol. 151, 503–511 (2000).

    Article  CAS  Google Scholar 

  25. Sciochetti, S. A., Piggot, P. J. & Blakely, G. W. Identification and characterization of the dif site from Bacillus subtilis. J. Bacteriol. 183, 1058–1068 (2001).

    Article  CAS  Google Scholar 

  26. Tomura, T. et al. Sporulation-inhibitory gene in pock-forming plasmid pSA1.1 of Streptomyces azureus. Biosci. Biotechnol. Biochem. 57, 438–443 (1993).

    Article  CAS  Google Scholar 

  27. Pettis, G. S. & Gohen, S. N. Plasmid transfer and expression of the transfer (tra) gene product of plasmid pIJ101 are temporally regulated during the Streptomyces lividans life cycle. Mol. Microbiol. 19, 1127–1135 (1996).

    Article  CAS  Google Scholar 

  28. Kosono, S., Kataoka, M., Seki, T. & Yoshida, T. The TraB protein, which mediates the intermycelial transfer of the Streptomyces plasmid pSN22, has functional NTP-binding motifs and is localized to the cytoplasmic membrane. Mol. Microbiol. 19, 397–405 (1996).

    Article  CAS  Google Scholar 

  29. Firth, N., Ippen–Ihler, K. & Skurray, R. A. in Escherichia coli and Salmonella: Cellular and Molecular Biology (eds Neidhardt, F. C. et al.) 2377–2401 (American Society for Microbiology, Washington DC, 1996).

    Google Scholar 

  30. Lanka, E. & Wilkins, B. M. DNA processing reactions in bacterial conjugation. Annu. Rev. Biochem. 64, 141–169 (1995).

    Article  CAS  Google Scholar 

  31. Kendall, K. J. & Cohen, S. N. Complete nucleotide sequence of the Streptomyces lividans plasmid pIJ101 and correlation of the sequence with genetic properties. J. Bacteriol. 170, 4634–4651 (1988).

    Article  CAS  Google Scholar 

  32. Hagège, J. et al. Transfer functions of the conjugative integrating element pSAM2 from Streptomyces ambofaciens: characterization of a kil–kor system associated with transfer. J. Bacteriol. 175, 5529–5538 (1993).

    Article  Google Scholar 

  33. Kataoka, M., Seki, T. & Yoshida, T. Five genes involved in self-transmission of pSN22, a Streptomyces plasmid. J. Bacteriol. 173, 7975–7981 (1991).

    Article  CAS  Google Scholar 

  34. Adams, R. T. & Wake, R. G. Highly specific labeling of the Bacillus subtilis chromosome terminus. J. Bacteriol. 143, 1036–1038 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Dunn, G., Jeffs, P., Mann, N. H., Torgersen, D. M. & Young, M. The relationship between DNA replication and the induction of sporulation in Bacillus subtilis. J. Gen. Microbiol. 108, 189–195 (1978).

    Article  CAS  Google Scholar 

  36. Sargent, M. G. Specific labeling of the Bacillus subtilis chromosome terminus. J. Bacteriol. 143, 1033–1035 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Lewis, P. J., Partridge, S. R. & Errington, J. σ factors, asymmetry, and the determination of cell fate in Bacillus subtilis. Proc Natl Acad Sci USA 91, 3849–3853 (1994).

    Article  CAS  Google Scholar 

  38. Heinemann, J. A. & Sprague, G. G. J. Bacterial conjugative plasmids mobilize DNA transfer between bacteria and yeast. Nature 340, 205–209 (1989).

    Article  CAS  Google Scholar 

  39. Hooykaas, P. J. & Schilperoort, R. A. Agrobacterium and plant genetic engineering. Plant Mol. Biol. 19, 15–38 (1992).

    Article  CAS  Google Scholar 

  40. Kunik, T. et al. Genetic transformation of HeLa cells by Agrobacterium. Proc Natl Acad Sci USA 98, 1871–1876 (2001).

    Article  CAS  Google Scholar 

  41. Gomis-Rüth, F. X. et al. The bacterial conjugation protein TrwB resembles ring helicases and F1–ATPase. Nature 409, 637–641 (2001).Crystal structure of the conjugation protein TrwB provides a likely mechanism for conjugative DNA transport and possibly SpoIIIE-mediated DNA transport by a ring helicase-type process.

    Article  Google Scholar 

  42. Hingorani, M. M. & O'Donnell, M. A tale of toroids in DNA metabolism. Nature Rev. Mol. Cell Biol. 1, 22–30 (2000).

    Article  CAS  Google Scholar 

  43. Patel, S. S. & Picha, K. M. Structure and function of hexameric helicases. Annu. Rev. Biochem. 69, 651–697 (2000).

    Article  CAS  Google Scholar 

  44. Partridge, S. R. & Errington, J. The importance of morphological events and intercellular interactions in the regulation of prespore-specific gene expression during sporulation in Bacillus subtilis. Mol. Microbiol. 8, 945–955 (1993).

    Article  CAS  Google Scholar 

  45. Salzberg, S. L., Salzberg, A. J., Kerlavage, A. R. & Tomb, J.-F. Skewed oligomers and origins of replication. Gene 217, 57–67 (1998).

    Article  CAS  Google Scholar 

  46. Pogliano, K., Hofmeister, A. E. & Losick, R. Disappearance of the σE transcription factor from the forespore and the SpoIIE phosphatase from the mother cell contributes to establishment of cell-specific gene expression during sporulation in Bacillus subtilis. J. Bacteriol. 179, 3331–3341 (1997).

    Article  CAS  Google Scholar 

  47. Morris, P. D. & Raney, K. D. DNA helicases displace streptavidin from biotin-labeled oligonucleotides. Biochemistry 38, 5164–5171 (1999).

    Article  CAS  Google Scholar 

  48. Dubnau, D. DNA uptake in bacteria. Annu. Rev. Microbiol. 53, 217–244 (1999).

    Article  CAS  Google Scholar 

  49. Letellier, L., Plançon, L., Bonhivers, M. & Boulanger, P. Phage DNA transport across membranes. Res. Microbiol. 150, 499–505 (1999).

    Article  CAS  Google Scholar 

  50. Hendrix, R. W. Bacteriophage DNA packaging: RNA gears in a DNA transport machine. Cell 94, 147–150 (1998).

    Article  CAS  Google Scholar 

  51. Zerfas, P. M., Kessel, M., Quintero, E. J. & Weiner, R. M. Fine-structure evidence for cell membrane partitioning of the nucleoid and cytoplasm during bud formation in Hyphomonas species. J. Bacteriol. 179, 148–156 (1997).

    Article  CAS  Google Scholar 

  52. Gelles, J. & Landick, R. RNA polymerase as a molecular motor. Cell 93, 13–16 (1998).

    Article  CAS  Google Scholar 

  53. Yin, H. et al. Transcription against an applied force. Science 270, 1653–1657 (1995).

    Article  CAS  Google Scholar 

  54. Harada, Y. et al. Direct observation of DNA rotation during transcription by Escherichia coli RNA polymerase. Nature 409, 113–115 (2001).

    Article  CAS  Google Scholar 

  55. Weiss, S. Measuring conformational dynamics of biomolecules by single molecule fluorescence spectroscopy. Nature Struct. Biol. 7, 724–729 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Work in the Errington lab is supported by grants from the BBSRC. J.E. acknowledges receipt of a BBSRC Senior Research Fellowship.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASE LINKS

SpoIIIE

ftsK

XerC

CodV

RipX

FURTHER INFORMATION

ProDom web site

Errington lab

Glossary

MOBILE GENETIC ELEMENTS

Plasmids, transposons and insertion elements that can readily spread from genome to genome and/or from cell to cell.

ENDOSPORE

A type of spore that develops within the cytoplasm of an enveloping mother cell or sporangium.

EUBACTERIA

All prokaryotes excluding the Archaea.

NUCLEOID

Equivalent to the nucleus of bacteria, in the absence of a nuclear membrane.

HOLLIDAY JUNCTION INTERMEDIATE

An X-shaped DNA structure formed during recombination, after strand exchange between homologous DNA duplexes.

WALKER A AND B MOTIFS

Highly conserved short-sequence motifs found in numerous proteins that bind and sometimes hydrolyse ATP.

RELAXOSOME COMPLEX

Complex of a Tra protein bound to its DNA recognition site (oriT), at which a single-stranded nick occurs to initiate DNA transfer.

ROLLING-CIRCLE DNA REPLICATION

Form of DNA replication on a circular template in which a single DNA strand is synthesized, continuously displacing the non-template strand.

DNA POLYMERASE III HOLOENZYME

Multisubunit protein complex responsible for the bulk of chromosome replication in bacteria.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Errington, J., Bath, J. & Wu, L. DNA transport in bacteria. Nat Rev Mol Cell Biol 2, 538–545 (2001). https://doi.org/10.1038/35080005

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35080005

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing