Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The dynamics of CD4+ T-cell depletion in HIV disease

Abstract

The size and composition of the CD4+ T-cell population is regulated by balanced proliferation of progenitor cells and death of mature progeny. After infection with the human immunodeficiency virus, this homeostasis is often disturbed and CD4+ T cells are instead depleted. Such depletion cannot result simply from accelerated destruction of mature CD4+ T cells — sources of T-cell production must also fail. Ironically, this failure may be precipitated by physiological mechanisms designed to maintain homeostasis in the face of accelerated T-cell loss.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Accelerated T-cell destruction leads to impaired production.

Similar content being viewed by others

References

  1. Levy, J. A. Pathogenesis of human immunodeficiency virus infection. Microbiol. Rev. 57, 183–289 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. D'Souza, M. P. & Fauci, A. S. in Textbook of AIDS Medicine (eds Merigan, T. C., Bartlett, J. G. & Bolognesi, D.) 59–85 (Williams and Wilkins, Baltimore, 1999).

    Google Scholar 

  3. Zinkernagel, R. M. Are HIV-specific CTL responses salutary or pathogenic? Curr. Opin. Immunol. 7, 462–470 (1995).

    Article  CAS  PubMed  Google Scholar 

  4. Mitra, D. K. et al. Differential representations of memory T cell subsets are characteristic of polarized immunity in leprosy and atopic diseases. Int. Immunol. 11, 1801–1810 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. Westermann, J. & Pabst, R. Lymphocyte subsets in the blood: a diagnostic window of the lymphoid system? Immunol. Today 9, 43–45 (1990).

    Google Scholar 

  6. Haase, A. T. Population biology of HIV-1 infection: viral and CD4+ T cell demographics and dynamics in lymphatic tissues. Annu. Rev. Immunol. 17, 625–656 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Rosok, B. I. et al. Reduced CD4 cell counts in blood do not reflect CD4 cell depletion in tonsillar tissue in asymptomatic HIV-1 infection. AIDS 10, F35–F38 (1996).

    CAS  PubMed  Google Scholar 

  8. Gorochov, G. et al. Perturbation of CD4+ and CD8+ T-cell repertoires during progression to AIDS and regulation of the CD4+ repertoire during antiviral therapy. Nature Med. 4, 215–221 (1998).

    Article  CAS  PubMed  Google Scholar 

  9. Clerici, M. & Shearer, G. A Th1 to Th2 switch is a critical step in the aetiology of HIV infection. Immunol. Today 14, 107–111 (1993).

    Article  CAS  PubMed  Google Scholar 

  10. Ho, D. D. et al. Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection. Nature 373, 123–126 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Wei, X. et al. Viral dynamics in human immunodeficiency virus type 1 infection. Nature 373, 117–122 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Wain-Hobson, S. Virological mayhem. Nature 373, 102 (1995).

  13. Nowak, M. A. et al. Viral dynamics of primary viremia and antiretroviral therapy in simian immunodeficiency virus infection. J. Virol. 71, 7518–7525 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Mohri, H., Bonhoeffer, S., Monard, S., Perelson, A. S. & Ho, D. D. Rapid turnover of T lymphocytes in SIV-infected rhesus macaques. Science 279, 1223–1227 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Fleury, S. et al. Long-term kinetics of T cell production in HIV-infected subjects treated with highly active antiretroviral therapy. Proc. Natl Acad. Sci. USA 97, 5393–5398 (2000).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hellerstein, M. et al. Directly measured kinetics of circulating T lymphocytes in normal and HIV-1-infected humans. Nature Med. 5, 83–89 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. McCune, J. M. et al. Factors influencing T cell turnover in HIV-1-seropositive patients. J. Clin. Invest. 105, R1–R9 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Harper, M. E., Marselle, L. M., Gallo, R. C. & Wong-Stall, F. Detection of lymphocytes expressing human T-lymphotropic virus type III in lymph nodes and peripheral blood from infected individuals by in situ hybridization. Proc. Natl Acad. Sci. USA 83, 772–776 (1986).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chun, T. W. et al. Quantification of latent tissue reservoirs and total body viral load in HIV-1 infection. Nature 387, 183–198 (1997).

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Butcher, E. C. & Picker, L. J. Lymphocyte homing and homeostasis. Science 276, 60–66 (1996).

    Article  ADS  Google Scholar 

  21. Mackay, C. R., Marston, W. L. & Dudler, L. Naive and memory T cells show distinct pathways of lymphocyte recirculation. J. Exp. Med. 171, 801–817 (1990).

    Article  CAS  PubMed  Google Scholar 

  22. Bishop, D. K., Ferguson, R. M. & Orosz, C. G. Differential distribution of antigen-specific helper T cells and cytotoxic T cell after antigenic stimulation in vivo. J. Immunol. 144, 1153–1160 (1990).

    CAS  PubMed  Google Scholar 

  23. Bujdoso, R., Young, P., Hopkins, J., Allen, D. & McConnell, I. Non-random migration of CD4 and CD8 T cells: changes in the CD4:CD8 ratio and interleukin 2 responsiveness of efferent lymph node cells following in vivo antigen challenge. Eur. J. Immunol. 19, 1779–1784 (1989).

    Article  CAS  PubMed  Google Scholar 

  24. Grossman, Z. & Herberman, R. B. T-cell homeostasis in HIV infection is neither failing nor blind: modified cell counts reflect an adaptive response of the host. Nature Med. 3, 486–490 (1997).

    Article  CAS  PubMed  Google Scholar 

  25. Rosenberg, Y. J. & Janossy, G. The importance of lymphocyte trafficking in regulating blood lymphocyte levels during HIV and SIV infections. Semin. Immunol. 11, 139–154 (1999).

    Article  CAS  PubMed  Google Scholar 

  26. Kirschner, D., Webb, G. F. & Cloyd, M. Model of HIV-1 disease progression based on virus-induced lymph node homing and homing-induced apoptosis of CD4+ lymphocytes. J. Acquir. Immune Defic. Syndr. 24, 352–362 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. Hengel, R. L., Jones, B. M., Kennedy, M. S., Hubbard, M. R. & McDougal, J. S. Markers of lymphocyte homing distinguish CD4 T cell subsets that turn over in response to HIV-1 infection in humans. J. Immunol. 163, 3539–3548 (1999).

    CAS  PubMed  Google Scholar 

  28. Rosenberg, Y. J. et al. Decline in the CD4+ lymphocyte population in the blood of SIV-infected macaques is not reflected in lymph nodes. AIDS Res. Hum. Retroviruses 9, 639–646 (1993).

    Article  CAS  PubMed  Google Scholar 

  29. Grossman, Z., Bentwich, Z. & Herberman, R. B. From HIV infection to AIDS: are the manifestations of effective immune resistance misinterpreted? Clin. Immunol. Immunopathol. 69, 123–125 (1993).

    Article  CAS  PubMed  Google Scholar 

  30. Wang, L., Chen, J. J., Gelman, B. B., Konig, R. & Cloyd, M. W. A novel mechanism of CD4 lymphocyte depletion involves effects of HIV on resting lymphocytes: induction of lymph node homing and apoptosis upon secondary signaling through homing receptors. J. Immunol. 162, 268–276 (1999).

    CAS  PubMed  Google Scholar 

  31. Mosier, D. E. HIV results in the frame: CD4+ cell turnover. Nature 375, 193–194 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  32. Sprent, J. & Tough, D. HIV results in the frame: CD4+ cell turnover. Nature 375, 194 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  33. Dimitrov, D. S. & Martin, M. A. HIV results in the frame: CD4+ cell turnover. Nature 375, 194–195 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  34. Pakker, N. G. et al. Biphasic kinetics of peripheral blood T cells after triple combination therapy in HIV-1 infection: a composite of redistribution and proliferation. Nature Med. 4, 208–214 (1998).

    Article  CAS  PubMed  Google Scholar 

  35. Bucy, R. P. et al. Initial increase in blood CD4+ lymphocytes after HIV antiretroviral therapy reflects redistribution from lymphoid tissues. J. Clin. Invest. 103, 1391–1398 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hazenberg, M. D., Hamann, D., Schuitemaker, H. & Miedema, F. T cell depletion in HIV-1 infection: how CD4+ T cells go out of stock. Nature Immunol. 1, 285–289 (2000).

    Article  CAS  Google Scholar 

  37. Grossman, Z., Feinberg, M. B. & Paul, W. E. Multiple modes of cellular activation and virus transmission in HIV infection: a role for chronically and latently infected cells in sustaining viral replication. Proc. Natl Acad. Sci. USA 95, 6314–6319 (1998).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  38. Anderson, R. W., Ascher, M. S. & Sheppard, H. W. Direct HIV cytopathicity cannot account for CD4 decline in AIDS in the presence of homeostasis: a worst-case dynamic analysis. J. Acquir. Immune Defic. Syndr. 17, 245–252 (1998).

    Article  CAS  Google Scholar 

  39. Krammer, P. H. CD95's deadly mission in the immune system. Nature 407, 789–795 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  40. Pope, M. et al. Conjugates of dendritic cells and memory T lymphocytes from skin facilitate productive infection with HIV-1. Cell 78, 389–398 (1994).

    Article  CAS  PubMed  Google Scholar 

  41. Bentwich, Z., Kalinkovich, A., Weisman, Z. & Grossman, Z. Immune activation in the context of HIV infection. Clin. Exp. Immunol. 111, 1–2 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Borkow, G. et al. Chronic immune activation associated with intestinal helminth infections results in impaired signal transduction and anergy. J. Clin. Invest. 106, 1053–1060 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. McCune, J. M. & Kaneshima, H. in Human Hematopoiesis in SCID Mice (eds Roncarolo, M.-G., Peault, B. & Namikawa, R.) 129–156 (Landes Publishing Company, Austin, TX, 1995).

    Book  Google Scholar 

  44. Moses, A., Nelson, J. & Bagby, G. The influence of human immunodeficiency virus-1 on hematopoiesis. Blood 91, 1479–1495 (1998).

    CAS  PubMed  Google Scholar 

  45. Huang, S. S. et al. Reversal of HIV-1-associated hematosuppression by effective antiretroviral therapy. Clin. Infect. Dis. 30, 504–510 (2000).

    Article  CAS  PubMed  Google Scholar 

  46. Fleury, S. et al. Limited CD4+ T-cell renewal in early HIV-1 infection: effect of highly active antiretroviral therapy. Nature Med. 4, 794–801 (1998).

    Article  CAS  PubMed  Google Scholar 

  47. McCune, J. M. HIV-1: the infective process in vivo. Cell 64, 351–363 (1991).

    Article  CAS  PubMed  Google Scholar 

  48. Su, L. et al. HIV-1 induced thymocyte depletion is associated with indirect cytopathicity and infection of progenitor cells in vivo. Immunity 2, 25–36 (1995).

    Article  CAS  PubMed  Google Scholar 

  49. Berkowitz, R. D. et al. R5 and X4 strains of HIV-1 exhibit differential tropism and pathogenesis in vivo. J. Virol. 72, 10108–10117 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Rabin, R. L. et al. Altered representation of naive and memory CD8 T cell subsets in HIV-infected children. J. Clin. Invest. 95, 2054–2060 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Roederer, M. et al. CD8 naive T cell counts decrease progressively in HIV-infected adults. J. Clin. Invest. 95, 2061–2066 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Douek, D. C. et al. Changes in thymic function with age and during the treatment of HIV infection. Nature 396, 690–695 (1999).

    Article  ADS  Google Scholar 

  53. Poulin, J.-F. et al. Direct evidence for thymic function in adult humans. J. Exp. Med. 190, 479–486 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zhang, L. et al. Measuring recent thymic emigrants in blood of normal and HIV-1-infected individuals before and after effective therapy. J. Exp. Med. 190, 725–732 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Autran, B. et al. Positive effects of combined antiretroviral therapy on CD4+ T cell homeostasis and function in advanced HIV disease. Science 277, 112–116 (1997).

    Article  CAS  PubMed  Google Scholar 

  56. Zhang, Z.-Q. et al. Kinetics of CD4+ T cell repopulation of lymphoid tissues after treatment of HIV-1 infection. Proc. Natl Acad. Sci. USA 95, 1154–1159 (1998).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  57. Smith, K. Y. et al. Thymic size and lymphocyte restoration in HIV infected patients following 48 weeks of therapy with zidovudine, lamivudine, and ritonavir. J. Infect. Dis. 181, 141–147 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  58. Kourtis, A. P. et al. Early progression of disease in HIV-infected infants with thymus dysfunction. N. Engl. J. Med. 335, 1431–1436 (1996).

    Article  CAS  PubMed  Google Scholar 

  59. Auger, I. et al. Incubation periods for paediatric AIDS patients. Nature 336, 575–577 (1988).

    Article  ADS  CAS  PubMed  Google Scholar 

  60. Belanger, F., Meyer, L., Carre, N., Coutellier, A. & Deveau, C. Influence of age at infection on human immunodeficiency virus disease progression to different clinical endpoints: the SEROCO cohort (1988-1994). Int. J. Epidemiol. 26, 1340–1345 (1997).

    Article  CAS  PubMed  Google Scholar 

  61. Globerson, A. & Effros, R. B. Ageing of lymphocytes and lymphocytes in the aged. Immunol. Today 21, 515–521 (2000).

    Article  CAS  PubMed  Google Scholar 

  62. McCune, J. M. Thymic function in HIV-1 disease. Semin. Immunol. 9, 397–404 (1997).

    Article  CAS  PubMed  Google Scholar 

  63. McCune, J. M. et al. High prevalence of thymic tissue in adults with HIV-1 infection. J. Clin. Invest. 101, 2301–2308 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Allen, T. M. et al. Tat-specific cytotoxic T lymphocytes select for SIV escape variants during resolution of primary viraemia. Nature 407, 386–390 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  65. Crowe, S. Role of macrophages in the pathogenesis of human immunodeficiency virus (HIV) infection. Aust. NZ J. Med. 25, 777–783 (1995).

    Article  CAS  Google Scholar 

  66. Geijtenbeek, T. B. et al. DC-SIGN, a dendritic cell-specific HIV-1-binding protein that enhances trans-infection of T cells. Cell 100, 587–597 (2000).

    Article  CAS  PubMed  Google Scholar 

  67. Schluns, K. S., Kieper, W. C., Jameson, S. C. & Lefrancois, L. Interleukin-7 mediates the homeostasis of naïve and memory CD8 T cells in vivo. Nature Immunol. 1, 426–432 (2000).

    Article  CAS  Google Scholar 

  68. Napolitano, L. A. et al. Increased production of IL-7 accompanies HIV-1-mediated T-cell depletion: implications for T-cell homeostasis. Nature Med. 7, 73–79 (2001).

    Article  CAS  PubMed  Google Scholar 

  69. Fry, T. J. et al. A potential role for IL-7 in T cell homeostasis. Blood (in the press).

  70. Chene, L. et al. Thymocyte-thymic epithelial cell interaction leads to high-level replication of human immunodeficiency virus exclusively in mature CD4+ CD8 CD3+ thymocytes: a critical role for tumor necrosis factor and interleukin-7. J. Virol. 73, 7533–7542 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Deeks, S. G., Barbour, J., Martin, J., Swanson, M. & Grant, R. M. Sustained CD4 T cell response after virologic failure of protease inhibitor based regimens in HIV infected patients. J. Infect. Dis. 181, 946–953 (2000).

    Article  CAS  PubMed  Google Scholar 

  72. Kaufmann, D., Pantaleo, G., Sudre, P. & Telenti, A. CD4-cell count in HIV-1-infected individuals remaining viraemic with highly active antiretroviral therapy. Lancet 351, 732–734 (1998).

    Article  Google Scholar 

  73. Deeks, S. G. et al. Incomplete and complete suppression of HIV-1 replication with protease inhibitor-based regimen are associated with similar T cell dynamics and activation. Proc. Natl Acad. Sci. USA (submitted).

  74. Stoddart, C. A. et al. Impaired replication of protease inhibitor-resistant HIV-1 in human thymus. Nature Med. (in the press).

  75. Casella, C. R. & Finkel, T. H. Mechanisms of lymphocyte killing by HIV. Curr. Opin. Hematol. 4, 24–31 (1997).

    Article  CAS  PubMed  Google Scholar 

  76. Gandhi, R. T. et al. HIV-1 directly kills CD4+ T cells by a Fas-independent mechanism. J. Exp. Med. 187, 1113–1122 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ahsan, N. & Langhoff, E. Immunopathogenesis of human immunodeficiency virus. Semin. Nephrol. 18, 422–435 (1998).

    CAS  PubMed  Google Scholar 

  78. Cao, J., Park, I. W., Cooper, A. & Sodroski, J. Molecular determinants of acute single-cell lysis by human immunodeficiency virus type 1. J. Virol. 70, 1340–1254 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Stewart, S. A., Poon, B., Jowett, J. B. M. & Chen, I. S. Y. Human immunodeficiency virus type 1 Vpr induces apoptosis following cell cycle arrest. J. Virol. 71, 5579–5592 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Ayyavoo, V. et al. HIV-1 Vpr suppresses immune activation and apoptosis through regulation of nuclear factor κB. Nature Med. 3, 1117–1123 (1997).

    Article  CAS  PubMed  Google Scholar 

  81. Hellerstein, M. K. Measurement of T-cell kinetics: recent methodologic advances. Immunol. Today 20, 438–441 (1999).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I thank J. Harris, M. Hellerstein, K. Komanduri, J. Moore, L. Napolitano, D. Nixon, K. K. Smith-McCune and Z. Grossman for helpful discussions and for their critical reading of the manuscript. I also apologize for the fact that many important references could not be included here because of space constraints. Work in my laboratory has been supported by grants from the NIH, the J. David Gladstone Institutes, the Elizabeth Glaser Pediatric AIDS Foundation and the Burroughs Wellcome Fund Clinical Scientist Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph M. McCune.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McCune, J. The dynamics of CD4+ T-cell depletion in HIV disease. Nature 410, 974–979 (2001). https://doi.org/10.1038/35073648

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35073648

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing