Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Melt retention and segregation beneath mid-ocean ridges

Abstract

Geochemical models of melting at mid-ocean ridges—particularly those based on trace elements and uranium-decay-series isotopes—predict that melt segregates from the matrix at very low porosities1,2,3,4,5,6,7,8, of order 0.1%. Some of these models also require that the melt ascends rapidly3,5. But these predictions appear to conflict with seismic data obtained by the mantle electromagnetic and tomography (MELT) experiment9. These data reveal, beneath the East Pacific Rise (at 17 °S), a region of low velocities several hundred kilometres wide, which is best explained by the presence of 1–2% melt, distributed on a grain scale in disk-shaped geometries10. Here I show that these apparently contradictory constraints can be reconciled by taking into account the geometry and resulting permeability of the intergranular network of melt, together with the changing character of the melt as it ascends. A deep, volatile-rich melt with low viscosity and density is mobile at 0.1% porosity, but basaltic melt only becomes mobile at a porosity above 1%. While the volumetric contribution of the volatile-rich melt to the erupted basalts is small, the isotopic disequilibria (except for radium) generated by porous flow of this melt are preserved if melt transport is rapid at the onset of high-productivity melting. Also, because of incomplete extraction, some melt is retained in a broad zone, consistent with the MELT observations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Permeability and resulting maximum porosity in a one-dimensional melting column.
Figure 2: Comparison of isotopic disequilibria produced by different permeabilities at a solid upwelling velocity of 3 cm yr-1 and with distribution coefficients for an enriched source (Table 1).
Figure 3: Sketch of the distribution of melt beneath a mid-ocean ridge.

Similar content being viewed by others

References

  1. Johnson, K. H., Dick, H. J. B. & Shimizu, N. Melting in the oceanic upper mantle: An ion microprobe study of diopsides in abyssal peridotites. J. Geophys. Res. 95, 2661–2678 (1990).

    Article  ADS  Google Scholar 

  2. Spiegelman, M. & Elliott, T. Consequences of melt transport for uranium series disequilibrium in young lavas. Earth Planet. Sci. Lett. 118, 1–20 (1993).

    Article  ADS  CAS  Google Scholar 

  3. Richardson, C. & McKenzie, D. Radioactive disequilibria from 2D models of melt generation by plumes and ridges. Earth Planet. Sci. Lett. 128, 425–437 (1994).

    Article  ADS  CAS  Google Scholar 

  4. Lundstrom, C. C., Gill, J., Williams, Q. & Perfit, M. R. Mantle melting and basalt extraction by equilibrium porous flow. Science 270, 1958–1961 (1995).

    Article  ADS  CAS  Google Scholar 

  5. Salters, V. J. M. & Longhi, J. Trace element partitioning during the initial stages of melting beneath mid-ocean ridges. Earth Planet. Sci. Lett. 166, 15–30 (1999).

    Article  ADS  CAS  Google Scholar 

  6. Lundstrom, C. C., Williams, Q. & Gill, J. B. Investigating solid mantle upwelling rates beneath mid-ocean ridges using U-series disequilibria, 1: a global approach. Earth Planet. Sci. Lett. 157, 151–165 (1998).

    Article  ADS  CAS  Google Scholar 

  7. Lundstrom, C. C., Gill, J. & Williams, Q. A geochemically consistent hypothesis for MORB generation. Chem. Geol. 162, 105–126 (2000).

    Article  ADS  CAS  Google Scholar 

  8. Lundstrom, C. C., Sampson, D. E., Perfit, M. R., Gill, J. & Williams, Q. Insights into mid-ocean ridge basalt petrogenesis: U-series disequilibria from the Siqueiros Transform, Lamont Seamounts, and East Pacific Rise. J. Geophys. Res. 104, 13035–13048 (1999).

    Article  ADS  CAS  Google Scholar 

  9. The MELT Seismic Team. Imaging the deep seismic structure beneath a mid-ocean ridge: the MELT experiment. Science 280, 1215–1218 (1998).

    Article  ADS  Google Scholar 

  10. Faul, U. H., Toomey, D. R. & Waff, H. S. Intergranular basaltic melt is distributed in thin, elongated inclusions. Geophys. Res. Lett. 21, 29–32 (1994).

    Article  ADS  Google Scholar 

  11. Turcotte, D. L. & Schubert, G. Geodynamics (John Wiley, New York, 1982).

    Google Scholar 

  12. von Bargen, N. & Waff, H. S. Permeabilities, interfacial areas and curvatures of partially molten systems: Results of numerical computations of equilibrium microstructures. J. Geophys. Res. 91, 9261–9276 (1986).

    Article  ADS  Google Scholar 

  13. Zhu, W., David, C. & Wong, T.-f. Network modeling of permeability evolution during cementation and hot isostatic pressing. J. Geophys. Res. 100, 15451–15464 (1995).

    Article  ADS  Google Scholar 

  14. Wark, D. A. & Watson, E. B. Grain-scale permeabilities of texturally equilibrated, monomineralic rocks. Earth Planet. Sci. Lett. 164, 591–605 (1998).

    Article  ADS  CAS  Google Scholar 

  15. Faul, U. H. Permeability of partially molten upper mantle rocks from experiments and percolation theory. J. Geophys. Res. 102, 10299–10311 (1997).

    Article  ADS  Google Scholar 

  16. Bourbie, T. & Zinszner, B. Hydraulic and acoustic properties as a function of porosity in Fontainebleau sandstone. J. Geophys. Res. 90, 11524–11532 (1985).

    Article  ADS  Google Scholar 

  17. McKenzie, D. Some remarks on the movement of small melt fractions in the mantle. Earth Planet. Sci. Lett. 95, 53–72 (1989).

    Article  ADS  Google Scholar 

  18. Spiegelman, M. UserCalc: A Web-based uranium series calculator for magma migration problems. Geochem. Geophys. Geosyst. 1, 1999 GC 0000 30 (2000).

  19. Michael, P. Regionally distinctive sources of depleted MORB: Evidence from trace elements and H2O. Earth Planet. Sci. Lett. 131, 301–320 (1995).

    Article  ADS  CAS  Google Scholar 

  20. Zhang, Y. & Zindler, A. Distribution and evolution of carbon and nitrogen in the Earth. Earth Planet. Sci. Lett. 117, 331–345 (1993).

    Article  ADS  CAS  Google Scholar 

  21. Green, D. H. & Liebermann, R. C. Phase equilibria and elastic properties of a pyrolite model for the oceanic upper mantle. Tectonophysics 32, 61–92 (1976).

    Article  ADS  CAS  Google Scholar 

  22. Blundy, J. D., Brodholt, J. P. & Wood, B. J. Carbon-fluid equilibria and the oxidation state of the upper mantle. Nature 349, 321–324 (1991).

    Article  ADS  CAS  Google Scholar 

  23. Mibe, K., Fujii, T. & Yasuda, A. Connectivity of aqueous fluid in the Earth's upper mantle. Geophys. Res. Lett. 25, 1233–1236 (1998).

    Article  ADS  CAS  Google Scholar 

  24. Dobson, D. P. et al. In-situ measurement of viscosity and density of carbonate melts at high pressure. Earth Planet. Sci. Lett. 143, 207–215 (1996).

    Article  ADS  CAS  Google Scholar 

  25. Hunter, R. H. & McKenzie, D. The equilibrium geometry of carbonate melts in rocks of mantle composition. Earth Planet. Sci. Lett. 92, 347–356 (1989).

    Article  ADS  CAS  Google Scholar 

  26. Galer, S. J. G. & O'Nions, R. K. Magmagenesis and the mapping of chemical and isotopic variations in the mantle. Chem. Geol. 56, 45–61 (1985).

    Article  ADS  Google Scholar 

  27. Plank, T. & Langmuir, C. H. Effects of the melting regime on the composition of the oceanic crust. J. Geophys. Res. 97, 19749–19770 (1992).

    Article  ADS  Google Scholar 

  28. Kelemen, P. B., Hirth, G., Shimizu, N., Spiegelman, M. & Dick, H. J. B. A review of melt migration processes in the adiabatically upwelling mantle beneath oceanic spreading ridges. Phil. Trans. R. Soc. Lond. A 355, 283–318 (1997).

    Article  ADS  Google Scholar 

  29. Yaxley, G. M. Experimental study of the phase and melting relations of homogeneous basalt + peridotite mixtures and implications for the petrogenesis of flood basalts. Contrib. Mineral. Petrol. 139, 326–338 (2000).

    Article  ADS  CAS  Google Scholar 

  30. Asimow, P. D. & Stolper, E. M. Steady-state mantle–melt interactions in one dimension: I. Equilibrium transport and melt focusing. J. Petrol. 40, 475–494 (1999).

    Article  ADS  CAS  Google Scholar 

  31. Nielsen, R. L., Sours-Page, R. E. & Harpp, K. S. Role of a Cl-bearing flux in the origin of depleted ocean floor magmas. Geochem. Geophys. Geosyst. 1, 1999 GC 0000 17 (2000).

  32. Hirth, G. & Kohlstedt, D. L. Water in the oceanic upper mantle: implications for rheology, melt extraction and evolution of the lithosphere. Earth Planet. Sci. Lett. 144, 93–108 (1996).

    Article  ADS  CAS  Google Scholar 

  33. Wood, B. J., Blundy, J. D. & Robinson, J. A. C. The role of clinopyroxene in generating U-series disequilibrium during mantle melting. Geochim. Cosmochim. Acta 63, 1613–1620 (1999).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

Discussions with S. Eggins, D. Green and H. O'Neill are gratefully acknowledged, as well as pre-publication access to a G3 article by M. Spiegelman. Reviews by T. Elliot and M. Spiegelman helped to shape this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich H. Faul.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Faul, U. Melt retention and segregation beneath mid-ocean ridges. Nature 410, 920–923 (2001). https://doi.org/10.1038/35073556

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35073556

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing