Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The life cycle of the peroxisome

Key Points

  • Like the Golgi apparatus, the population of peroxisomes in a cell consists of structurally and functionally distinct subcompartments (subforms) that are related through the ordered conversion of one subform to another.

  • The import of a limited subset of peroxisomal membrane proteins commits a specialized preperoxisomal endomembrane to become the earliest peroxisomal precursor (nascent peroxisome). Nascent peroxisomes can import another subset of membrane proteins and the bulk of matrix proteins, and they eventually mature into functional peroxisomes in a multistep process. In yeast and plant cells, the endoplasmic reticulum, might serve as the preperoxisomal endomembrane. The nature of the preperoxisomal endomembrane is under debate. In human cells, a preperoxisomal endomembrane might exist as an autonomous vesicular structure.

  • Many soluble and membrane-associated components of the peroxisomal machineries specific for the import of membrane and matrix proteins have been identified. These import machineries probably assemble in a temporally and spatially ordered manner in distinct intermediates along the peroxisome assembly pathway.

  • Whereas only unfolded, monomeric proteins can be translocated across the endoplasmic reticulum and mitochondrial membranes, the machinery for the import of matrix proteins can translocate completely folded polypeptides and oligomeric proteins across the peroxisomal membrane.

  • Peroxisomes undergo both constitutive (independent of extracellular stimuli) division during mitosis and regulated division induced in response to some external signal. A specific subset of peroxins coordinates the growth and regulated division of peroxisomes.

Abstract

Peroxisomes are highly adaptable organelles that carry out oxidative reactions. Distinct cellular machineries act together to coordinate peroxisome formation, growth, division, inheritance, turnover, movement and function. Soluble and membrane-associated components of these machineries form complex networks of physical and functional interactions that provide supramolecular control of the precise dynamics of peroxisome biogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Appearance of peroxisomes in different organisms.
Figure 2: Import of peroxisomal membrane proteins.
Figure 3: Import of matrix proteins into peroxisomes.
Figure 4: Two models for the dynamics of multistep peroxisome assembly.
Figure 5: Two models for the formation of early peroxisomal precursors.

Similar content being viewed by others

References

  1. Lazarow, P. B. & Fujiki, Y. Biogenesis of peroxisomes. Annu. Rev. Cell Biol. 1, 489–530 (1985).

    Article  CAS  PubMed  Google Scholar 

  2. Subramani, S. Protein import into peroxisomes and biogenesis of the organelle. Annu. Rev. Cell Biol. 9, 445–478 (1993).

    Article  CAS  PubMed  Google Scholar 

  3. Bodnar, A. G. & Rachubinski, R. A. Characterization of the integral membrane polypeptides of rat liver peroxisomes isolated from untreated and clofibrate-treated rats. Biochem. Cell Biol. 69, 499–508 (1991).

    Article  CAS  PubMed  Google Scholar 

  4. Wanders, R. J. A. & Tager, J. M. Lipid metabolism in peroxisomes in relation to human disease. Mol. Aspects Med. 19, 69–154 ( 1998).

    Article  CAS  PubMed  Google Scholar 

  5. Geraghty, M. T. et al. Detecting patterns of protein distribution and gene expression in silico. Proc. Natl Acad. Sci. USA 96, 2937–2942 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. Titorenko, V. I. & Rachubinski, R. A. Dynamics of peroxisome assembly and function. Trends Cell Biol. 11, 22–29 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Subramani, S., Koller, A. & Snyder, W. B. Import of peroxisomal matrix and membrane proteins . Annu. Rev. Biochem. 69, 399– 418 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Fujiki, Y. Peroxisome biogenesis and peroxisome biogenesis disorders. FEBS Lett. 476, 42–46 ( 2000).

    Article  CAS  PubMed  Google Scholar 

  9. Gould, S. J. & Valle, D. Peroxisome biogenesis disorders: genetics and cell biology. Trends Genet. 16, 340– 345 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Suzuki, Y. et al. Biosynthesis of membrane polypeptides of rat liver peroxisomes . J. Biochem. 101, 491– 496 (1987).

    Article  CAS  PubMed  Google Scholar 

  11. Imanaka, T., Shiina, Y., Takano, T., Hashimoto, T. & Osumi, T. Insertion of the 70 kDa peroxisomal membrane protein into peroxisomal membranes in vivo and in vitro. J. Biol. Chem. 271, 3706–3713 (1996).

    Article  CAS  PubMed  Google Scholar 

  12. Diestelkötter, P. & Just, W. W. In vitro insertion of the 22-kD peroxisomal membrane protein into isolated rat liver peroxisomes. J. Cell Biol. 123, 1717– 1725 (1993).

    Article  PubMed  Google Scholar 

  13. Just, W. W. & Diestelkötter, P. Protein insertion into the peroxisomal membrane. Ann. NY Acad. Sci. 804, 60–75 (1996).

    Article  CAS  PubMed  Google Scholar 

  14. Pause, B., Diestelkötter, P., Heid, H. & Just, W. W. Cytosolic factors mediate protein insertion into the peroxisomal membrane . FEBS Lett. 414, 95–98 (1997).

    Article  CAS  PubMed  Google Scholar 

  15. Dyer, J. M., McNew, J. A. & Goodman, J. M. The sorting sequence of the peroxisomal integral membrane protein PMP47 is contained within a short hydrophilic loop. J. Cell Biol. 133, 269–280 (1996).A detailed analysis of the first identified peroxisomal membrane targeting signal.

    Article  CAS  PubMed  Google Scholar 

  16. Koller, A. et al. Pex22p of Pichia pastoris, essential for peroxisomal matrix protein import, anchors the ubiquitin-conjugating enzyme, Pex4p, on the peroxisomal membrane. J. Cell Biol. 146, 99–112 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Pause, B., Saffrich, R., Hunziker, A., Ansorge, W. & Just, W. W. Targeting of the 22 kDa integral peroxisomal membrane protein. FEBS Lett. 471, 23–28 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Götte, K. et al. Pex19p, a farnesylated protein essential for peroxisome biogenesis . Mol. Cell. Biol. 18, 616– 628 (1998).

    Article  PubMed  PubMed Central  Google Scholar 

  19. James, G. L., Goldstein, J. L., Pathak, R. K., Anderson, R. G. & Brown, M. S. PxF, a prenylated protein of peroxisomes. J. Biol. Chem. 269, 14182–14190 (1994).

    CAS  PubMed  Google Scholar 

  20. Kammerer, S. et al. Genomic organization and molecular characterization of a gene encoding HsPXF, a human peroxisomal farnesylated protein. Genomics 45, 200–210 ( 1997).

    Article  CAS  PubMed  Google Scholar 

  21. Snyder, W. B. et al. Pex19p interacts with Pex3p and Pex10p and is essential for peroxisome biogenesis in Pichia pastoris. Mol. Biol. Cell 10, 1745–1761 ( 1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Matsuzono, Y. et al. Human PEX19: cDNA cloning by functional complementation, mutational analysis in a patient with Zellweger syndrome and potential role in peroxisomal membrane assembly. Proc. Natl Acad. Sci. USA 96, 2116–2121 (1999).

    Article  CAS  PubMed  Google Scholar 

  23. Sacksteder, K. A. et al. PEX19 binds multiple peroxisomal membrane proteins, is predominantly cytoplasmic, and is required for peroxisome membrane synthesis. J. Cell Biol. 148, 931–944 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Snyder, W. B., Koller, A., Choy, A. J. & Subramani, S. The peroxin Pex19p interacts with multiple, integral membrane proteins at the peroxisomal membrane. J. Cell Biol. 149, 1171– 1177 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hettema, E. H., Girzalsky, W., van den Berg, M., Erdmann, R. & Distel, B. Saccharomyces cerevisiae Pex3p and Pex19p are required for proper localization and stability of peroxisomal membrane proteins. EMBO J. 19, 223– 233 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Snyder, W. B. et al. Pex17p is required for import of both peroxisome membrane and lumenal proteins and interacts with Pex19p and the peroxisome targeting signal-receptor docking complex in Pichia pastoris. Mol. Biol. Cell 10, 4005–4019 (1999).Evidence for the existence of multiple subcomplexes containing separable pools of peroxins.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hettema, E. H., Distel, B. & Tabak, H. F. Import of proteins into peroxisomes. Biochim. Biophys. Acta 1451, 17–34 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. Crookes, W. J. & Olsen, L. J. The effects of chaperones and the influence of protein assembly on peroxisomal protein import . J. Biol. Chem. 273, 17236– 17242 (1998).Evidence that cotranslational binding of a peroxisomal matrix protein to Hsp70 is required for its Hsp90-mediated post-translational import into the lumen of the plant peroxisome.

    Article  CAS  PubMed  Google Scholar 

  29. Frydman, J., Nimmesgern, E., Ohtsuka, K. & Hartl, F.-U. Folding of nascent polypeptide chains in a high molecular mass assembly with molecular chaperones. Nature 370, 111– 117 (1994).

    Article  CAS  PubMed  Google Scholar 

  30. Hettema, E. H. et al. The cytosolic DnaJ-like protein Djp1p is involved specifically in peroxisomal protein import. J. Cell Biol. 142 , 421–434 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Walton, P. A., Wendland, M., Subramani, S., Rachubinski, R. A. & Welch, W. J. Involvement of 70-kD heat-shock proteins in peroxisomal import. J. Cell Biol. 125, 1037–1046 ( 1994).

    Article  CAS  PubMed  Google Scholar 

  32. Preisig-Müller, R., Muster, G. & Kindl, H. Heat shock enhances the amount of prenylated Dnaj protein at membranes of glyoxysomes. Eur. J. Biochem. 219, 57–63 (1994).

    Article  PubMed  Google Scholar 

  33. Titorenko, V. I., Smith, J. J., Szilard, R. K. & Rachubinski, R. A. Pex20p of the yeast Yarrowia lipolytica is required for the oligomerization of thiolase in the cytosol and for its targeting to the peroxisome. J. Cell Biol. 142, 403–420 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kragler, F., Langeder, A., Raupachova, J., Binder, M. & Hartig, A. Two independent peroxisomal targeting signals in catalase-A of Saccharomyces cerevisiae. J. Cell Biol. 120, 665–673 ( 1993).

    Article  CAS  PubMed  Google Scholar 

  35. Elgersma, Y., van Roermund, C. W. T., Wanders, R. J. A. & Tabak, H. F. Peroxisomal and mitochondrial carnitine acetyltransferases of Saccharomyces cerevisiae are encoded by a single gene. EMBO J. 14, 3472–3479 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. McNew, J. A. & Goodman, J. M. The targeting and assembly of peroxisomal proteins: some old rules do not apply. Trends Biochem. Sci. 21, 54–58 ( 1996).

    Article  CAS  PubMed  Google Scholar 

  37. Zhang, J. W., Luckey, C. & Lazarow, P. B. Three peroxisome protein packaging pathways suggested by selective permeabilization of yeast mutants defective in peroxisome biogenesis . Mol. Biol. Cell 4, 1351– 1359 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Braverman, N., Dodt, G., Gould, S. J. & Valle, D. An isoform of Pex5p, the human PTS1 receptor, is required for the import of PTS2 proteins into peroxisomes. Hum. Mol. Genet. 7, 1195– 1205 (1998).

    Article  CAS  PubMed  Google Scholar 

  39. Otera, H. et al. Peroxisome targeting signal type 1 (PTS1) receptor is involved in import of both PTS1 and PTS2: studies with PEX5-defective CHO cell mutants . Mol. Cell. Biol. 18, 388– 399 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Dodt, G. et al. Mutations in the PTS1 receptor gene, PXR1, define complementation group 2 of the peroxisome biogenesis disorders. Nature Genet. 9, 115–125 (1995).

    Article  CAS  PubMed  Google Scholar 

  41. Otera, H. et al. The mammalian peroxin Pex5pL, the longer isoform of the mobile peroxisome targeting signal (PTS) type 1 transporter, translocates the Pex7p·PTS2 protein complex into peroxisomes via its initial docking site, Pex14p. J. Biol. Chem. 275, 21703–21714 (2000).Evidence that the longer isoform of the mammalian PTS1 receptor, Pex5L, binds cargo-loaded PTS2 receptor, Pex7, and is required for translocation of the Pex7–PTS2 protein complex across the peroxisomal membrane.

    Article  CAS  PubMed  Google Scholar 

  42. Matsumura, T., Otera, H. & Fujiki, Y. Disruption of the interaction of the longer isoform of Pex5p, Pex5pL, with Pex7p abolishes peroxisome targeting signal type 2 protein import in mammals. Study with a novel PEX5-impaired Chinese hamster ovary cell mutant. J. Biol. Chem. 275, 21715 –21721 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. Fransen, M., Terlecky, S. R. & Subramani, S. Identification of a human PTS1 receptor docking protein directly required for peroxisomal protein import. Proc. Natl Acad. Sci. USA 95, 8087–8092 ( 1998).

    Article  CAS  PubMed  Google Scholar 

  44. Chang, C.-C., Warren, D. S., Sacksteder, K. A. & Gould, S. J. PEX12 interacts with PEX5 and PEX10 and acts downstream of receptor docking in peroxisomal matrix protein import. J. Cell Biol. 147, 761–773 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. McCollum, D., Monosov, E. & Subramani, S. The pas8 mutant of Pichia pastoris exhibits the peroxisomal protein import deficiencies of Zellweger syndrome cells; the PAS8 protein binds to the COOH-terminal tripeptide peroxisomal targeting signal and is a member of the TPR protein family. J. Cell Biol. 121, 761–774 (1993).

    Article  CAS  PubMed  Google Scholar 

  46. Albertini, M. et al. Pex14p, a peroxisomal membrane protein binding both receptors of the two PTS-dependent import pathways. Cell 89, 83–92 (1997).

    Article  CAS  PubMed  Google Scholar 

  47. Girzalsky, W. et al. Involvement of Pex13p in Pex14p localization and peroxisomal targeting signal 2-dependent protein import into peroxisomes. J. Cell Biol. 144, 1151–1162 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Purdue, P. E., Yang, X. & Lazarow, P. B. Pex18p and Pex21p, a novel pair of related peroxins essential for peroxisomal targeting of the PTS2 pathway. J. Cell Biol. 143, 1859–1869 ( 1998).

    Article  CAS  PubMed  Google Scholar 

  49. Elgersma, Y. et al. The SH3 domain of the Saccharomyces cerevisiae peroxisomal membrane protein Pex13p functions as a docking site for Pex5p, a mobile receptor for the import of PTS1 containing proteins. J. Cell Biol. 135, 97–109 (1996).

    Article  CAS  PubMed  Google Scholar 

  50. Huhse, B. et al. Pex17p of Saccharomyces cerevisiae is a novel peroxin and component of the peroxisomal protein translocation machinery. J. Cell Biol. 140, 49–60 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Urquhart, A. J., Kennedy, D., Gould, S. J. & Crane, D. I. Interaction of Pex5p, the type 1 peroxisome targeting signal receptor, with the peroxisomal membrane proteins Pex14p and Pex13p. J. Biol. Chem. 275, 4127–4136 ( 2000).A detailed kinetic analysis of in vitro protein–protein interactions showing that the initial binding of the Pex5–PTS1 protein complex to its initial docking site, Pex14, might result in dissociation of the complex and promote the subsequent or concomitant interaction of cargo-free Pex5 with Pex13.

    Article  CAS  PubMed  Google Scholar 

  52. Collins, C. S., Kalish, J. E., Morrell, J. C., McCaffery, J. M. & Gould, S. J. The peroxisome biogenesis factors Pex4p, Pex22p, Pex1p, and Pex6p act in the terminal steps of peroxisomal matrix protein import. Mol. Cell. Biol. 20, 7516 –7526 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Rehling, P. et al. Pex8p, an intraperoxisomal peroxin of Saccharomyces cerevisiae required for protein transport into peroxisomes binds the PTS1 receptor Pex5p. J. Biol. Chem. 275, 3593– 3602 (2000).

    Article  CAS  PubMed  Google Scholar 

  54. van der Klei, I. J. et al. The ubiquitin-conjugating enzyme Pex4p of Hansenula polymorpha is required for efficient functioning of the PTS1 import machinery. EMBO J. 17, 3608–3618 ( 1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Walton, P. A., Gould, S. J., Rachubinski, R. A., Subramani, S. & Feramisco, J. R. Transport of microinjected alcohol oxidase from Pichia pastoris into vesicles in mammalian cells: involvement of the peroxisomal targeting signal. J. Cell Biol. 118, 499–508 ( 1992).

    Article  CAS  PubMed  Google Scholar 

  56. Glover, J. R., Andrews, D. W. & Rachubinski, R. A. Saccharomyces cerevisiae peroxisomal thiolase is imported as a dimer. Proc. Natl Acad. Sci. USA 91 , 10541–10545 (1994).

    Article  CAS  PubMed  Google Scholar 

  57. McNew, J. A. & Goodman, J. M. An oligomeric protein is imported into peroxisomes in vivo. J. Cell Biol. 127, 1245–1257 (1994).

    Article  CAS  PubMed  Google Scholar 

  58. Walton, P. A., Hill, P. E. & Subramani, S. Import of stably folded proteins into peroxisomes. Mol. Biol. Cell 6, 675–683 (1995).The largest nondeformable structure, a colloidal gold particle, able to traverse the peroxisomal membrane is at least 9 nm in diameter.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Goodman, J. M., Scott, C. W., Donahue, P. N. & Atherton, J. P. Alcohol oxidase assembles post-translationally into the peroxisome of Candida boidinii. J. Biol. Chem. 259, 8485–8493 (1984).

    CAS  PubMed  Google Scholar 

  60. Waterham, H. R., Russell, K. A., de Vries, Y. & Cregg, J. M. Peroxisomal targeting, import, and assembly of alcohol oxidase in Pichia pastoris. J. Cell. Biol. 139, 1419– 1431 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Corpas, F. J. & Trelease, R. N. The plant 73 kDa peroxisomal membrane protein (PMP73) is immunorelated to molecular chaperones. Eur. J. Cell Biol. 73, 49–57 (1997).

    CAS  PubMed  Google Scholar 

  62. Wimmer, B., Lottspeich, F., van der Klei, I., Veenhuis, M. & Gietl, C. The glyoxysomal and plastid molecular chaperones (70-kDa heat shock protein) of watermelon cotyledons are encoded by a single gene. Proc. Natl Acad. Sci. USA 94, 13624–13629 (1997).

    Article  CAS  PubMed  Google Scholar 

  63. Teter, S. A. & Klionsky, D. J. How to get a folded protein across a membrane. Trends Cell Biol. 9, 428–431 (1999).

    Article  CAS  PubMed  Google Scholar 

  64. Heinemann, P. & Just, W. W. Peroxisomal protein import. In vivo evidence for a novel translocation competent compartment. FEBS Lett. 300, 179–182 (1992).The first demonstration that newly synthesized peroxisomal proteins are imported primarily into small peroxisomal vesicles of intermediate buoyant density that subsequently convert to mature peroxisomes of high density.

    Article  CAS  PubMed  Google Scholar 

  65. Lüers, G., Hashimoto, T., Fahimi, H. D. & Völkl, A. Biogenesis of peroxisomes: isolation and characterization of two distinct peroxisomal populations from normal and regenerating rat liver. J. Cell Biol. 121, 1271–1280 (1993).

    Article  PubMed  Google Scholar 

  66. Wilcke, M., Hultenby, K. & Alexson, S. E. H. Novel peroxisomal populations in subcellular fractions from rat liver. Implications for peroxisome structure and biogenesis. J. Biol. Chem. 270, 6949–6958 (1995).

    Article  CAS  PubMed  Google Scholar 

  67. Titorenko, V. I., Eitzen, G. A. & Rachubinski, R. A. Mutations in the PAY5 gene of the yeast Yarrowia lipolytica cause the accumulation of multiple subpopulations of peroxisomes. J. Biol. Chem. 271, 20307 –20314 (1996).

    Article  CAS  PubMed  Google Scholar 

  68. South, S. T. & Gould, S. J. Peroxisome synthesis in the absence of preexisting peroxisomes. J. Cell Biol. 144, 255–266 (1999).A model for two overlapping, multistep pathways of peroxisome assembly in human fibroblasts.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Titorenko, V. I., Chan, H. & Rachubinski, R. A. Fusion of small peroxisomal vesicles in vitro reconstructs an early step in the in vivo multistep peroxisome assembly pathway of Yarrowia lipolytica. J. Cell Biol. 148, 29–43 (2000). Evidence for the existence of a multistep peroxisome assembly pathway that operates by the ordered conversion of structurally distinct peroxisomal subforms to mature peroxisomes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Titorenko, V. I. & Rachubinski, R. A. Peroxisomal membrane fusion requires two AAA family ATPases, Pex1p and Pex6p. J. Cell Biol. 150, 881–886 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Titorenko, V. I. & Rachubinski, R. A. Mutants of the yeast Yarrowia lipolytica defective in protein exit from the endoplasmic reticulum are also defective in peroxisome biogenesis. Mol. Cell. Biol. 18, 2789–2803 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Waterham, H. R., Titorenko, V. I., Swaving, G. J., Harder, W. & Veenhuis, M. Peroxisomes in the methylotrophic yeast Hansenula polymorpha do not necessarily derive from pre-existing organelles. EMBO J. 12, 4785– 4794 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Honsho, M. et al. Mutation in PEX16 is causal in the peroxisome-deficient Zellweger syndrome of complementation group D. Am. J. Hum. Genet. 63, 1622–1630 ( 1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Baerends, R. J. S. et al. The Hansenula polymorpha PER9 gene encodes a peroxisomal membrane protein essential for peroxisome assembly and integrity . J. Biol. Chem. 271, 8887– 8894 (1996).

    Article  CAS  PubMed  Google Scholar 

  75. South, S. T., Sacksteder, K. A., Li, X., Liu, Y. & Gould, S. J. Inhibitors of COPI and COPII do not block PEX3-mediated peroxisome synthesis. J. Cell Biol. 149, 1345–1359 ( 2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Titorenko, V. I. & Rachubinski, R. A. The endoplasmic reticulum plays an essential role in peroxisome biogenesis. Trends Biochem. Sci. 23, 231–233 (1998).

    Article  CAS  PubMed  Google Scholar 

  77. Mullen, R. T., Lisenbee, C. S., Miernyk, J. A. & Trelease, R. N. Peroxisomal membrane ascorbate peroxidase is sorted to a membranous network that resembles a subdomain of the endoplasmic reticulum. Plant Cell 11, 2167–2185 ( 1999).Some yeast and plant peroxisomal membrane proteins are inserted post-translationally in vitro into membranes of the endoplasmic reticulum but not into membranes of peroxisomes or of any other purified organelle.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Elgersma, Y. et al. Overexpression of Pex15p, a phosphorylated peroxisomal integral membrane protein required for peroxisome assembly in S. cerevisiae, causes proliferation of the endoplasmic reticulum membrane. EMBO J. 16, 7326–7341 ( 1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Mullen, R. T. & Trelease, R. N. The sorting signals for peroxisomal membrane-bound ascorbate peroxidase are within its C-terminal tail. J. Biol. Chem. 275, 16337–16344 (2000).

    Article  CAS  PubMed  Google Scholar 

  80. Marshall, P. A., Dyer, J. M., Quick, M. E. & Goodman, J. M. Redox-sensitive homodimerization of Pex11p: a proposed mechanism to regulate peroxisomal division. J. Cell Biol. 135, 123–137 (1996).A detailed analysis of the mechanism of Pex11 action in regulating division of yeast peroxisomes from within the organelle.

    Article  CAS  PubMed  Google Scholar 

  81. Tan, X., Waterham, H. R., Veenhuis, M. & Cregg, J. M. The Hansenula polymorpha PER8 gene encodes a novel peroxisomal integral membrane protein involved in proliferation. J. Cell Biol. 128, 307–319 (1995).

    Article  CAS  PubMed  Google Scholar 

  82. Veenhuis, M. & Goodman, J. M. Peroxisomal assembly: membrane proliferation precedes the induction of the abundant matrix proteins in the methylotrophic yeast Candida boidinii. J. Cell Sci. 96, 583–590 (1990).

    CAS  PubMed  Google Scholar 

  83. Erdmann, R. & Blobel, G. Giant peroxisomes in oleic acid-induced Saccharomyces cerevisiae lacking the peroxisomal membrane protein Pmp27p . J. Cell Biol. 128, 509– 523 (1995).

    Article  CAS  PubMed  Google Scholar 

  84. Marshall, P. A. et al. Pmp27 promotes peroxisomal proliferation. J. Cell Biol. 129, 345–355 ( 1995).

    Article  CAS  PubMed  Google Scholar 

  85. Schrader, M. et al. Expression of PEX11β mediates peroxisome proliferation in the absence of extracellular stimuli. J. Biol. Chem. 273, 29607–29614 (1998).

    Article  CAS  PubMed  Google Scholar 

  86. van Roermund, C. W. T., Tabak, H. F., van den Berg, M., Wanders, R. J. A. & Hettema, E. H. Pex11p plays a primary role in medium-chain fatty acid oxidation, a process that affects peroxisome number and size in Saccharomyces cerevisiae. J. Cell Biol. 150, 489–497 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Lorenz, P., Maier, A. G., Baumgart, E., Erdmann, R. & Clayton, C. Elongation and clustering of glycosomes in Trypanosoma brucei overexpressing the glycosomal Pex11p. EMBO J. 17, 3542–3555 ( 1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Passreiter, M. et al. Peroxisome biogenesis: involvement of ARF and coatomer. J. Cell Biol. 141, 373–383 (1998).Evidence that the recruitment of ARF and coatomer by Pex11, which resides on the cytosolic face of mammalian peroxisomes, might initiate fission and/or budding of these organelles followed by their division.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Chang, C.-C. et al. Metabolic control of peroxisome abundance. J. Cell Sci. 112, 1579–1590 ( 1999).

    CAS  PubMed  Google Scholar 

  90. Poll-Thé, B. T. et al. A new peroxisomal disorder with enlarged peroxisomes and a specific deficiency of acyl-CoA oxidase (pseudo-neonatal adrenoleukodystrophy) . Am. J. Hum. Genet. 42, 422– 434 (1988).

    PubMed  PubMed Central  Google Scholar 

  91. Nakagawa, T. et al. Peroxisomal membrane protein Pmp47 is essential in the metabolism of middle-chain fatty acid in yeast peroxisomes and is associated with peroxisome proliferation. J. Biol. Chem. 275, 3455– 3461 (2000).

    Article  CAS  PubMed  Google Scholar 

  92. Fan, C.-Y. et al. Steatohepatitis, spontaneous peroxisome proliferation and liver tumors in mice lacking peroxisomal fatty acyl-CoA oxidase. Implications for peroxisome proliferator-activated receptor α natural ligand metabolism . J. Biol. Chem. 273, 15639– 15645 (1998).

    Article  CAS  PubMed  Google Scholar 

  93. Smith, J. J., Brown, T. W., Eitzen, G. A. & Rachubinski, R. A. Regulation of peroxisome size and number by fatty acid β-oxidation in the yeast Yarrowia lipolytica. J. Biol. Chem. 275, 20168–20178 (2000).

    Article  CAS  PubMed  Google Scholar 

  94. Baerends, R. J. S., Salomons, F. A., Kiel, J. A. K. W., van der Klei, I. J. & Veenhuis, M. Deviant Pex3p levels affect normal peroxisome formation in Hansenula polymorpha: a sharp increase of the protein level induces the proliferation of numerous, small protein-import competent peroxisomes. Yeast 13 , 1449–1463 (1997).

    Article  CAS  PubMed  Google Scholar 

  95. Eitzen, G. A., Szilard, R. K. & Rachubinski, R. A. Enlarged peroxisomes are present in oleic acid-grown Yarrowia lipolytica overexpressing the PEX16 gene encoding an intraperoxisomal peripheral membrane peroxin. J. Cell Biol. 137, 1265–1278 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank N.-H. Chua, I. Coppens, G. Jedd and F.R. Opperdoes for providing images for Fig. 1 and for helpful discussion. This work was supported by grants from the Canadian Institutes of Health Research (CIHR) to R.A.R. R.A.R. is a Senior Scientist of the CIHR and an International Research Scholar of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASE LINKS

catalase

peroxisome biogenesis disorders

PMP22

TriC

Pex19

Pex11

Pex14

PMP70

Pex16

Hsp40

Hsp70

Djp1

Hsp90

Hsp73

Pex5

Pex7

carnitine acetyltransferase

acyl-CoA oxidase

Pex12

Pex1

Pex6

Pex18

Pex21

Pex4

ARF1

COPI

PMP47

acyl-CoA oxidase

fatty acyl-CoA synthetase

FURTHER INFORMATION

Rachubinski lab

The peroxisome website

Subramani lab

ENCYCLOPEDIA OF LIFE SCIENCES

Protein import into peroxisomes

Peroxisomes: methods for preparation

Plant cells: peroxisomes and glyoxysomes

Glossary

PEROXINS

Proteins required for various aspects of peroxisome (microbody) biogenesis, including assembly of the peroxisomal membrane, import of peroxisomal matrix proteins, peroxisome proliferation and peroxisome inheritance.

mPTS1

Peroxisomal membrane targeting signal 1 for post-translational targeting of peroxisomal membrane proteins directly from the cytosol. There is no clear sequence consensus for the mPTS1, but several motifs have been reported, including (K/R)(K/R)X3–7(T/S)X2(D/E) and (Y)X3(L)X3(P)X3(K/Q/N).

mPTS2

Peroxisomal membrane targeting signal 2 for targeting of peroxisomal membrane proteins indirectly from the endoplasmic reticulum (ER). The mPTS2 acts in the ER lumen. Two similar consensus motifs have been reported, namely (R/K)X(K/R)X (K/R)X(L/I)X9–10(F/Y) and (L/I/V)X(R)X(K/R)X(K)X(L/I)

PTS1

Carboxy-terminal peroxisomal targeting signal 1 found in most peroxisomal matrix proteins. It is a tripeptide with the consensus motif (S/A/C)(K/R/H)(L/M/I).

PTS2

Peroxisomal targeting signal 2 that has been found so far at the amino termini of four peroxisomal matrix proteins. It is a nonapeptide with the consensus motif (R/K)(L/V/I)X5(H/Q)(L/A).

CHAPERONE

Protein that mediates assembly of another polypeptide-containing structure, but does not form part of the completed structure, or participate in its biological function.

PREPEROXISOMAL ENDOMEMBRANE

An endomembrane committed to become the earliest peroxisomal precursor (the nascent peroxisome), and not another organelle, by uptake of a limited subset of peroxisomal membrane proteins. Also called early preperoxisome.

NASCENT PEROXISOME

The earliest peroxisomal precursor formed by uptake of a limited subset of peroxisomal membrane proteins into a preperoxisomal endomembrane and that can import an additional set of membrane proteins to become an early peroxisomal precursor. Also called late preperoxisome.

HSP

(Heat-shock protein). Protein induced in response to elevated temperature, classified according to its size. Functions as a molecular chaperone.

TPR

The tetratricopeptide repeat motif consists of a highly degenerate 34-amino-acid repeat believed to form an interlocking series of α-helices. The TPR is thought to mediate protein–protein interactions, preferably with proteins that have WD-40 repeats.

WD-40

Repeat of 40 amino acids with a characteristic central Trp–Asp motif. WD-40 proteins are often associated with TPR- repeat proteins.

RING

A cysteine-rich 'RING' finger domain of 40 to 60 amino acids, also called the C3HC4 Zn finger, which binds two atoms of Zn and might mediate protein–protein interactions. Most RING-finger proteins have been shown to bind DNA.

AAA ATPASES

ATPases associated with different cellular activities that contain one or two AAA motifs of 230 to 250 amino acids, including the Walker homology sequences of P-loop ATPases and regions of similarity unique to AAA proteins.

SH3

60-amino-acid Src homology 3 domain that mediates the assembly of specific protein complexes through binding to proline-rich peptides.

MATURE PEROXISOMES

Metabolically active, functional peroxisomes that contain the complete complement of membrane and matrix proteins and membrane lipids.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Titorenko, V., Rachubinski, R. The life cycle of the peroxisome. Nat Rev Mol Cell Biol 2, 357–368 (2001). https://doi.org/10.1038/35073063

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35073063

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing