Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Low organic carbon accumulation rates in Black Sea sediments

Abstract

THE Black Sea, the world's largest anoxic marine basin, is frequently used as a modern analogue for the formation of organic-rich sediments and carbonaceous rocks1–3, on the widely held assumption that anoxic conditions promote the preferential preservation of organic matter in sediments. Data for testing this hypothesis have so far been equivocal4–7, but here we use radiocarbon ages obtained using accelerator mass spectrometry for the organic fraction of recent Black Sea sediments to estimate the organic carbon accumulation rates. These range from 0.69 to 2.09 g C m−2 yr−1 and are significantly lower than earlier estimates based on varve counting6. Depending on the value taken for the rate of primary production in the Black Sea4,8, between 0.7 and 2.1% of the organic carbon is preserved in the bottom sediments. When compared with carbon accumulation rates in equivalent oxygenated environments9, these results indicate that the modern Black Sea is not a site of anomalously high organic carbon accumulation. This suggests that anoxic conditions in the water column may not be a prerequisite for the preservation of organic matter in marine sediments, and that models of the origin of carbonaceous facies in the geological record may therefore need to be modified.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Woolnough, W. G. Bull. Am. Ass. Petrol. Geol. 21, 1101–1157 (1937).

    CAS  Google Scholar 

  2. Thiede, J. & van Andel, T. H. Earth planet. Sci. 33, 301–309 (1977).

    Article  CAS  ADS  Google Scholar 

  3. Demaison, G. J. & Moore, G. T. Org. Geochem. 2, 9–31 (1980).

    Article  CAS  Google Scholar 

  4. Deuser, W. G. Deep-Sea Res. 18, 995–1004 (1971).

    CAS  Google Scholar 

  5. Calvert, S. E., Vogel, J. S. & Southon, J. R. Geology 15, 918–921 (1987).

    Article  CAS  ADS  Google Scholar 

  6. Hay, B. J. Paleoceanography 3, 491–508 (1988).

    Article  ADS  Google Scholar 

  7. Canfield, D. E. Deep-Sea Res. 36, 121–138 (1989).

    Article  CAS  ADS  Google Scholar 

  8. Sorokin, Y. I. in Ecosystems of the World, Vol. 26: Estuaries and Enclosed Seas (ed. Ketchum, B. H.) (Elsevier, Amsterdam, 1983).

    Google Scholar 

  9. Müller, P. J. & Suess, E. Deep-Sea Res. 26, 1347–1362 (1979).

    Article  ADS  Google Scholar 

  10. Ross, D. A., Degens, E. T. & Mcllvaine, J. Science 170, 163–165 (1970).

    Article  CAS  ADS  Google Scholar 

  11. Kögler, F-C. Meyniana 13, 1–7 (1963).

    Google Scholar 

  12. Pilskaln, C. H. Trans. Am. Geophys. Un. 71, 151 (1990).

    Google Scholar 

  13. Slota, P. J., Jull, A. J. T., Linick, T. W. & Toolin, L. J. Radiocarbon 29, 303–306 (1987).

    Article  CAS  Google Scholar 

  14. Linick, T. W., Jull, A. J. T., Toolin, L. J. & Donahue, D. J. Radiocarbon 28, 522–533 (1986).

    Article  CAS  Google Scholar 

  15. Vogel, J. S., Southon, J. R., Nelson, D. E. & Brown, T. A. Nucl. Instrum. Meth. 233, 289–293 (1984).

    Article  CAS  Google Scholar 

  16. Nelson, D. E., Vogel, J. S., Southon, J. R. & Brown, T. A. Radiocarbon 28, 215–222 (1986).

    Article  CAS  Google Scholar 

  17. Degens, E. T. et al. Neues Jb. Geol. Paläontol. Mh. 1980, 65–86 (1980).

  18. Honjo, S. et al. Mitt. Geol. Paläontol. Institut Univ. Hamburg 62, 19–39 (1987).

    Google Scholar 

  19. Hay, B. J. et al. Deep-Sea Res. 37, 911–928 (1990).

    Article  CAS  ADS  Google Scholar 

  20. Broecker, W. S. & Peng, T-H. Tracers in the Sea, 690 (Eldigeo, Palisades, New York, 1982).

    Google Scholar 

  21. Murray, J. W., Top, Z. & Ozsoy, E. Deep-Sea Res. (in the press).

  22. Jones, G. A. Trans. Am. Geophys. Un. 71, 152 (1990).

    Google Scholar 

  23. Crusius, J. & Anderson, R. Paleoceanography (submitted).

  24. Vaynshteyn, M. B., Tokarev, V. G., Shakola, V. A., Lein, A. Y. & Ivanov, M. V. Geokhimiya 7, 1032–1044 (1985); (Engl. transl.) 110–122.

    Google Scholar 

  25. Henrichs, S. M. & Reeburgh, W. S. Geomicrobiol. J. 5, 191–237 (1987).

    Article  CAS  Google Scholar 

  26. Pedersen, T. F. & Calvert, S. E. Bull. Am. Ass. Petrol. Geol. 74, 454–466 (1990).

    CAS  Google Scholar 

  27. Calvert, S. E. & Pedersen, T. F. in Productivity, Accumulation and Preservation of Organic Matter in Recent and Ancient Sediments (eds Whelan, J. K. & Farrington, J. W.) (Columbia University Press, in the press).

  28. Karl, D. M. & Knauer, G. A. Deep-Sea Res. (in the press).

  29. Sarnthein, M., Winn, K., Duplessy, J-C. & Fontugne, M. R. Paleoceanography 3, 361–399 (1988).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Calvert, S., Karlin, R., Toolin, L. et al. Low organic carbon accumulation rates in Black Sea sediments. Nature 350, 692–695 (1991). https://doi.org/10.1038/350692a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/350692a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing