Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cbl: many adaptations to regulate protein tyrosine kinases

Key Points

  • c-Cbl is a multidomain signalling protein that was first identified as part of an oncogenic mouse retrovirus. Other mammalian homologues (Cbl-b and Cbl-3), and Cbl proteins in Drosophila melanogaster and Caenorhabditis elegans have since been identified.

  • Loss-of-function mutations in Cbl from C. elegans (known as SLI-1) restore signalling from a weakly active LET-23 receptor tyrosine kinase (RTK), a finding that defined Cbl proteins as negative regulators of RTKs.

  • All Cbl proteins have a unique tyrosine-kinase-binding (TKB) domain that recognizes phosphorylated tyrosines on activated RTKs, and a RING finger domain that recruits ubiquitin-conjugating enzymes. These two domains are primarily responsible for Cbl proteins functioning as ubiquitin protein ligases that direct multi-ubiquitylation and downregulation of RTKs.

  • c-Cbl can also target and negatively regulate non-receptor tyrosine kinases such as Syk and ZAP-70, but whether the mechanism involves E3 activity remains uncertain.

  • Cbl proteins have additional regions that mediate binding to numerous proteins that contain Src homology region 2 and 3 (SH2 and SH3) domains and 14-3-3 proteins. These regions are associated with the formation of protein complexes at the site of activated tyrosine kinases, some of which are involved in bone resorption, glucose uptake and cell spreading.

  • Cbl proteins can be made oncogenic by overexpressing the TKB domain alone (v-Cbl) or by deleting amino acids within an α-helix in a small domain that links the TKB domain to the RING finger. These mutations disrupt TKB domain interactions with the linker α-helix and abolish E3 activity.

  • Loss of E3 activity alone is insufficient for transformation as not all mutations that abolish RTK multi-ubiquitylation are transforming. Transformation also requires an undefined deregulation of TKB domain function, which results in the constitutive activation of RTKs.

  • c-Cbl- and Cbl-b-deficient mice show enhanced signalling in thymocytes and peripheral T cells, respectively. In both c-Cbl and Cbl-b mutant mice, T-cell-receptor responses are uncoupled from a requirement for co-receptor stimulation.

Abstract

Responses to extracellular stimuli are often transduced from cell-surface receptors to protein tyrosine kinases which, when activated, initiate the formation of protein complexes that transmit signals throughout the cell. A prominent component of these complexes is the product of the proto-oncogene c-Cbl, which specifically targets activated protein tyrosine kinases and regulates their signalling. How, then, does this multidomain protein shape the responses generated by these signalling complexes?

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The Cbl protein family.
Figure 2: c-Cbl interacts with many signalling proteins.
Figure 3: The genetic pathway of vulval induction in Caenorhabditis elegans is negatively regulated by sli-1.
Figure 4: Proposed model for the role of c-Cbl in directing multi-ubiquitylation and downregulation of the epidermal growth factor receptor.
Figure 5: Cbl proteins negatively regulate T-cell-receptor-coupled signalling pathways.
Figure 6: Structure of the complex between c-Cbl and UBCH7.

Similar content being viewed by others

References

  1. Langdon, W. Y., Hartley, J. W., Klinken, S. P., Ruscetti, S. K. & Morse, H. C.,III . v-cbl, an oncogene from a dual-recombinant murine retrovirus that induces early B-lineage lymphomas. Proc. Natl Acad. Sci. USA 86, 1168?1172 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Blake, T. J., Shapiro, M., Morse, H. C.,III & Langdon, W. Y. The sequences of the human and mouse c-cblproto-oncogenes show v-cbl was generated by a large truncation encompassing a proline-rich domain and a leucine zipper-like motif. Oncogene 6, 653?657 (1991).

    CAS  PubMed  Google Scholar 

  3. Keane, M. M., Rivero-Lezcano, O. M., Mitchell, J. A., Robbins, K. C. & Lipkowitz, S. Cloning and characterization of cbl-b: a SH3-binding protein with homology to the c-cbl proto-oncogene. Oncogene 10, 2367?2377 ( 1995).

    CAS  PubMed  Google Scholar 

  4. Keane, M. M. et al. cbl-3: a new mammalian cbl family protein. Oncogene 18, 3365?3375 ( 1999).

    CAS  PubMed  Google Scholar 

  5. Meisner, H. et al. Interactions of Drosophilia Cbl with epidermal growth factor receptors and role of Cbl in R7 photoreceptor cell development. Mol. Cell. Biol. 17, 2217?2225 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Hime, G. R., Dhungat, M. P., Ng, A. & Bowtell, D. D. L. D-Cbl, the Drosophila homologue of the c-Cbl proto-oncogene, interacts with the Drosophila EGF receptor in vivo, despite lacking C-terminal adaptor binding sites. Oncogene 14, 2709? 2719 (1997).

    CAS  PubMed  Google Scholar 

  7. Robertson, H., Hime, G. H., Lada, H. & Bowtell, D. D. L. A Drosophila analogue of v-Cbl is a dominant-negative oncoprotein in vivo. Oncogene 19, 3299?3308 ( 2000).

    CAS  PubMed  Google Scholar 

  8. Yoon, C. H., Lee, J., Jongeward, G. D. & Sternberg, P. W. Similarity of sli-1, a regulator of vulval development in C. elegans , to the mammalian proto-oncogene c-cbl. Science 269, 1102?1105 (1995). A seminal publication that identified Cbl as a negative regulator of receptor tyrosine kinases.

    CAS  PubMed  Google Scholar 

  9. Galisteo, M. L., Dikic, I., Batzer, A. G., Langdon, W. Y. & Schlessinger, J. Tyrosine phosphorylation of the c-cbl proto-oncogene product and association with epidermal growth factor (EGF) receptor upon EGF stimulation. J. Biol. Chem. 270, 20242? 20245 (1995).First demonstration that the amino-terminal half of c-Cbl can bind directly to tyrosine-phosphorylated epidermal growth factor receptor. This finding was further characterized in reference 10.

    CAS  PubMed  Google Scholar 

  10. Lupher, M. L. Jr, Reedquist, K. A., Miyake, S., Langdon, W. Y. & Band, H. A novel PTB domain in the N-terminal transforming region of Cbl interacts directly and selectively with ZAP-70 in T cells. J. Biol. Chem. 271, 24063? 24068 (1996).

    CAS  PubMed  Google Scholar 

  11. Bonita, D. P., Miyake, S., Lupher Jr, M. L., Langdon, W. Y. & Band, H. Phosphotyrosine binding domain-dependent upregulation of the platelet-derived growth factor receptor α signaling cascade by transforming mutants of Cbl: implications for Cbl's function and oncogenicity. Mol. Cell. Biol. 17, 4597? 4610 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Thien, C. B. F. & Langdon, W. Y. EGF receptor binding and transformation by v-cbl is ablated by the introduction of a loss-of-function mutation from the Caenorhabditis elegans sli-1 gene. Oncogene 14, 2239?2249 ( 1997).

    CAS  PubMed  Google Scholar 

  13. Lupher, M. L. Jr et al. Cbl-mediated negative regulation of the Syk tyrosine kinase . J. Biol. Chem. 273, 35273? 35281 (1998).

    CAS  PubMed  Google Scholar 

  14. Deckert, M., Elly, C., Altman, A. & Liu, Y. C. Coordinated regulation of the tyrosine phosphorylation of Cbl by Fyn and Syk tyrosine kinases. J. Biol. Chem. 273, 8867?8874 (1998).

    CAS  PubMed  Google Scholar 

  15. Meng, W., Sawasdikosol, S., Burakoff, S. J. & Eck, M. J. Structure of the amino-terminal domain of Cbl complexed to its binding site on ZAP-70 kinase. Nature 398, 84? 90 (1999).The structure of Cbl's novel TKB domain revealed three interacting domains comprising a four-helix bundle, a Ca2+-binding EF hand and a variant SH2 domain.

    CAS  PubMed  Google Scholar 

  16. Waterman, H., Levkowitz, G., Alroy, I. & Yarden, Y. The RING finger of c-Cbl mediates desensitization of the epidermal growth factor. J. Biol. Chem. 274, 22151?22154 (1999).

    CAS  PubMed  Google Scholar 

  17. Joazeiro, C. A. P. et al. The tyrosine kinase negative regulator c-Cbl as a RING-type, E2-dependent ubiquitin-protein ligase. Science 286, 309?312 (1999).This paper, along with references 18 and 19 , was the first to define Cbl as an E3 ubiquitin protein ligase.

    CAS  PubMed  Google Scholar 

  18. Levkowitz, G. et al. Ubiquitin ligase activity and tyrosine phosphorylation underlie suppression of growth factor signaling by c-Cbl/Sli-1. Mol. Cell 4, 1?20 (1999 ).

    Google Scholar 

  19. Yokouchi, M. et al. Ligand-induced ubiquitination of the epidermal growth factor receptor involves the interaction of the c-Cbl RING finger and UbcH7. J. Biol. Chem. 274, 31707?31712 (1999).

    CAS  PubMed  Google Scholar 

  20. Zheng, N., Wang, P., Jeffrey, P. D. & Pavletich, N. P. Structure of a c-Cbl?UbcH7 complex: RING domain function in ubiquitin-protein ligases. Cell 102, 533? 539 (2000).The structure revealed that UBCH7 has several interactions with c-Cbl's RING finger domain and a highly conserved α-helix at the carboxyl terminus of the linker domain. This paper helped to explain the why deletions in the linker α-helix convert Cbl to an oncogenic protein.

    CAS  PubMed  Google Scholar 

  21. Wong, E. S. M., Lim, J., Low, B. C., Chen, Q. & Guy, G. R. Evidence for direct interaction between Sprouty and Cbl . J. Biol. Chem. 276, 5866? 5875 (2001).

    CAS  PubMed  Google Scholar 

  22. Hacohen, N., Kramer, S., Sutherland, D., Hiromi, Y. & Kasnow, M. A. sprouty encodes a novel antagonist of FGF signaling that patterns apical branching of the Drosophila airways. Cell 92, 253? 263 (1998).

    CAS  PubMed  Google Scholar 

  23. Casci, T., Vinòs, J. & Freeman, M. Sprouty, an intracellular inhibitor of Ras signaling . Cell 96, 655?665 (1999).

    CAS  PubMed  Google Scholar 

  24. Liu, Y.-C., Elly, C., Yoshida, H., Bonnefoy-Berard, N. & Altman, A. Activation-modulated association of 14-3-3 proteins with Cbl in T cells. J. Biol. Chem. 271, 14591?14595 (1996).

    CAS  PubMed  Google Scholar 

  25. Liu, Y. C. et al. Serine phosphorylation of Cbl induced by phorbol ester enhances its association with 14-3-3 proteins in T cells via a novel serine-rich 14-3-3-binding motif. J. Biol. Chem. 272, 9979? 9985 (1997).

    CAS  PubMed  Google Scholar 

  26. Liu, Y. et al. Protein kinase C activation inhibits tyrosine phosphorylation of Cbl and its recruitment of Src homology 2 domain-containing proteins. J. Immunol. 162, 7095?7101 (1999).

    CAS  PubMed  Google Scholar 

  27. Fernàndez, B., Czech, M. P. & Meisner, H. Role of protein kinase C in signal attenuation following T cell receptor engagement. J. Biol. Chem. 274, 20244?20250 (1999).

    PubMed  Google Scholar 

  28. Feshchenko, E. A., Langdon, W. Y. & Tsygankov, A. Y. Fyn, Yes and Syk phosphorylation sites in c-Cbl map to the same tyrosine residues that become phosphorylated in activated T cells . J. Biol. Chem. 273, 8323? 8331 (1998).

    CAS  PubMed  Google Scholar 

  29. Tezuka, T. et al. Physical and functional association of the cbl protooncogene product with an Src-family protein tyrosine kinase, p53/56lyn, in the B cell antigen receptor-mediated signaling. J. Exp. Med. 183, 675?680 ( 1996).

    CAS  PubMed  Google Scholar 

  30. de Jong, R., ten Hoeve, J., Heisterkamp, N. & Groffen, J. Crkl is complexed with tyrosine-phosphorylated cbl in Ph-positive leukemia . J. Biol. Chem. 270, 21468? 21471 (1995).

    CAS  PubMed  Google Scholar 

  31. Buday, L., Khwaja, A., Sipeki, S., Farago, A. & Downward, J. Interactions of Cbl with two adaptor proteins, Grb2 and Crk, upon T cell activation. J. Biol. Chem. 271 , 6159?6163 (1996).

    CAS  PubMed  Google Scholar 

  32. Sattler, M. et al. The proto-oncogene product p120CBL and the adaptor proteins CRKL and c-CRK link c-ABL, p190BCR/ABL and p210BCR/ABL to the phosphatidylinositol-3′ kinase pathway . Oncogene 12, 839?846 (1996).

    CAS  PubMed  Google Scholar 

  33. Ribon, V., Hubbell, S., Herrera, R. & Saltiel, A. R. The product of the cbl oncogene forms stable complexes in vivo with endogenous crk in a tyrosine phosphorylation-dependent manner. Mol. Cell. Biol. 16, 45?52 ( 1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Andoniou, C. E., Thien, C. B. F. & Langdon, W. Y. The two major sites of cbl tyrosine phosphorylation in abl-transformed cells select the crkL SH2 domain. Oncogene 12, 1981?1989 (1996).

    CAS  PubMed  Google Scholar 

  35. Jain, S. K., Langdon, W. Y. & Varticovski, L. Tyrosine phosphorylation of p120 cbl in BCR/abl transformed hematopoietic cells mediates enhanced association with phosphatidylinositol 3-kinase. Oncogene 14, 2217? 2228 (1997).

    CAS  PubMed  Google Scholar 

  36. Marengére, L. E. M. et al. Proto-oncoprotein Vav interacts with c-Cbl in activated thymocytes and peripheral T cells. J. Immunol. 159, 70?76 (1997).

    PubMed  Google Scholar 

  37. Elly, C. et al. Tyrosine phosphorylation and complex formation of Cbl-b upon T cell receptor stimulation. Oncogene 18, 1147?1156 (1999).

    CAS  PubMed  Google Scholar 

  38. Songyang, Z. et al. SH2 domains recognize specific phosphopeptide sequences. Cell 72, 767?778 ( 1993).

    CAS  PubMed  Google Scholar 

  39. Hartley, D. & Corvera, S. Formation of c-Cbl-phosphatidylinositol 3-kinase complexes on lymphocyte membranes by a p56lck-independent mechanism. J. Biol. Chem. 271, 21939? 21943 (1996).

    CAS  PubMed  Google Scholar 

  40. Liu, Y.-C., Elly, C., Langdon, W. Y. & Altman, A. Ras-dependent, Ca2+-stimulated activation of nuclear factor of activated T cells by a constitutively active Cbl mutant in T cells. J. Biol. Chem. 272, 168?173 ( 1997).

    CAS  PubMed  Google Scholar 

  41. Hunter, S., Burton, E. A., Wu, S. C. & Anderson, S. M. Fyn associates with Cbl and phosphorylates tyrosine 731 in Cbl, a binding site for phosphatidylinositol 3-kinase. J. Biol. Chem. 274, 2097? 2106 (1999).

    CAS  PubMed  Google Scholar 

  42. Hofmann, K. & Bucher, P. UBA domain: a sequence motif present in multiple enzyme classes of ubiquitin pathway. Trends. Biochem. Sci. 21, 172?173 ( 1996).

    CAS  PubMed  Google Scholar 

  43. Wang, Y., Yeung, Y. G., Langdon, W. Y. & Stanley, E. R. c-cbl is transiently tyrosine-phosphorylated, ubiquitinated, and membrane-targeted following CSF-1 stimulation of macrophages. J. Biol. Chem. 271, 17?20 (1996). First paper to indicate a connection between c-Cbl and protein multi-ubiquitylation.

    CAS  PubMed  Google Scholar 

  44. Miyake, S., Lupher, M. L. Jr, Druker, B. & Band, H. The tyrosine kinase regulator Cbl enhances the ubiquitination and degradation of the platelet-derived growth factor receptor α. Proc. Natl Acad. Sci. USA 95, 7927?7932 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Levkowitz, G. et al. c-Cbl/Sli-1 regulates endocytic sorting and ubiquitination of the epidermal growth factor receptor. Genes Dev. 12, 3663?3674 (1998). References 44 and 45 were the first to show that c-Cbl can function as a negative regulator of receptor tyrosine kinase signalling by directing the multi-ubiquitylation of activated receptors.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Lee, P. S. W. et al. The Cbl protooncoprotein stimulates CSF-1 receptor multiubiquitination and endocytosis, and attenuates macrophage proliferation. EMBO J. 18, 3616?3628 ( 1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Lill, N. L. et al. The evolutionarily conserved N-terminal region of Cbl is sufficient to enhance down-regulation of the epidermal growth factor receptor. J. Biol. Chem. 275, 367?377 (2000).

    CAS  PubMed  Google Scholar 

  48. Bartkiewicz, M., Houghton, A. & Baron, R. Leucine zipper-mediated homodimerization of the adaptor protein c-Cbl. J. Biol. Chem. 274, 30887 ?30895 (1999).

    CAS  PubMed  Google Scholar 

  49. Jongeward, G. D., Clandinin, T. R. & Sternberg, P. W. sli-1, a negative regulator of let-23-mediated signaling in C. elegans. Genetics 139, 1553?1566 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Pai, L.-M., Barcelo, G. & Schüpbach, T. D-Cbl, a negative regulator of the Egfr pathway, is required for dorsoventral patterning in Drosophila oogenesis. Cell 103, 51?61 ( 2000).

    CAS  PubMed  Google Scholar 

  51. Tanaka, S., Neff, L., Baron, R. & Levy, J. Tyrosine phosphorylation and translocation of the c-cbl protein after activation of tyrosine kinase signaling pathways. J. Biol. Chem. 270, 14347?14351 (1995).

    CAS  PubMed  Google Scholar 

  52. Bowtell, D. D. L. & Langdon, W. Y. The protein product of the c-cbl oncogene rapidly complexes with the EGF receptor and is tyrosine phosphorylated following EGF stimulation. Oncogene 11, 1561?1567 ( 1995).

    CAS  PubMed  Google Scholar 

  53. Ettenberg, S. A. et al. cbl-b inhibits epidermal growth factor receptor signaling . Oncogene 18, 1855?1866 (1999).

    CAS  PubMed  Google Scholar 

  54. Lupher, M. L., Songyang, Z., Shoelson, S. E., Cantley, L. C. & Band, H. The Cbl phosphotyrosine-binding domain selects a D(N/D)XpY motif and binds to the TyrP292 negative regulatory phosphorylation site of ZAP-70. J. Biol. Chem. 272, 33140 ?33144 (1997).

    CAS  PubMed  Google Scholar 

  55. Kong, G. et al. Distinct tyrosine phosphorylation sites in ZAP-70 mediate activation and negative regulation of antigen receptor function. Mol. Cell. Biol. 16, 5026?5035 ( 1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Zhao, Q. & Weiss, A. Enhancement of lymphocyte responsiveness by a gain-of-function mutation of ZAP-70. Mol. Cell. Biol. 16, 6765?6774 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Galcheva-Gargova, Z., Theroux, S. J. & Davis, R. J. The epidermal growth factor receptor is covalently linked to ubiquitin. Oncogene 11, 2649? 2655 (1995).

    CAS  PubMed  Google Scholar 

  58. Levkowitz, G. et al. c-Cbl is a suppressor of the Neu oncogene. J. Biol. Chem. 275, 35532?35539 ( 2000).

    CAS  PubMed  Google Scholar 

  59. Stang, E., Johannessen, L. E., Knardal, S. L. & Madshus, I. H. Polyubiquitination of the epidermal growth factor receptor occurs at the plasma membrane upon ligand-induced activation. J. Biol. Chem. 275, 13940?13947 (2000).

    CAS  PubMed  Google Scholar 

  60. Thien, C. B. F., Walker, F. & Langdon, W. Y. Ring finger mutations that abolish c-Cbl-directed polyubiquitination and downregulation of the EGF receptor are insufficient for cell transformation. Mol. Cell 7, 355 ?365 (2001).

    CAS  PubMed  Google Scholar 

  61. Fang, D. et al. Cbl-b, a RING-type E3 ubiquitin ligase, targets phosphatidylinositol 3-kinase for ubiquitination in T cells. J. Biol. Chem. 276, 4872?4878 (2001).

    CAS  PubMed  Google Scholar 

  62. Ueno, H. et al. Antisense repression of proto-oncogene c-Cbl enhances activation of the JAK-STAT pathway but not the Ras pathway in epidermal growth factor receptor signaling. J. Biol. Chem. 272, 8739?8743 (1997).

    CAS  PubMed  Google Scholar 

  63. Ojaniemi, M., Langdon, W. Y. & Vuori, K. Oncogenic forms of Cbl abrogate the anchorage requirement but not the growth factor requirement for proliferation. Oncogene 16, 3159?3167 ( 1998).

    CAS  PubMed  Google Scholar 

  64. Miyake, S., Mullane-Robinson, K. P., Lill, N. L., Douillard, P. & Band, H. Cbl-mediated negative regulation of platelet-derived growth factor receptor-dependent cell proliferation. J. Biol. Chem. 274, 16619?16628 (1999).

    CAS  PubMed  Google Scholar 

  65. Broome, M. A., Galisteo, M. L., Schlessinger, J. & Courtneidge, S. A. The proto-oncogene c-Cbl is a negative regulator of DNA synthesis initiated by both receptor and cytoplasmic tyrosine kinases. Oncogene 18, 2908?2912 (1999).

    CAS  PubMed  Google Scholar 

  66. Ota, Y. & Samelson, L. E. The product of the proto-oncogene c-Cbl ? a negative regulator of the Syk tyrosine kinase. Science 276, 418?420 ( 1997).First paper to show a negative regulatory role for Cbl towards a protein tyrosine kinase in mammalian cells.

    CAS  PubMed  Google Scholar 

  67. Rao, N. et al. The linker phosphorylation site Tyr292 mediates the negative regulatory effect of Cbl on ZAP-70 in T cells. J. Immunol. 164, 4616?4626 (2000).

    CAS  PubMed  Google Scholar 

  68. Ota, S. et al. The RING finger domain of Cbl is essential for negative regulation of the Syk tyrosine kinase. J. Biol. Chem. 275, 414?422 (2000).

    CAS  PubMed  Google Scholar 

  69. Yasuda, T. et al. Cbl suppresses B cell receptor-mediated phospholipase C (PLC)-γ2 activation by regulating B cell linker protein-PLCγ2 binding. J. Exp. Med. 191, 641?650 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Murphy, M. A. et al. Tissue hyperplasia and enhanced T cell signalling via ZAP-70 in c-Cbl deficient mice. Mol. Cell. Biol. 18, 4872?4882 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Naramura, M., Kole, H. K., Hu, R.-J. & Gu, H. Altered thymic positive selection and intracellular signals in Cbl-deficient mice. Proc. Natl Acad. Sci. USA 95, 15547?15552 (1998).References 70 and 71 provided evidence that c-Cbl functions as a negative regulator of ZAP-70 and that ZAP-70 in c-Cbl−/− thymocytes can be activated in the absence of CD4 co-receptor stimulation.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Thien, C. B. F., Bowtell, D. D. L. & Langdon, W. Y. Perturbed regulation of ZAP-70 and sustained tyrosine phosphorylation of LAT and SLP-76 in c-Cbl-deficient thymocytes. J. Immunol. 162, 7133?7139 (1999).

    CAS  PubMed  Google Scholar 

  73. Tanaka, S. et al. c-Cbl is downstream of c-Src in a signalling pathway necessary for bone resorption. Nature 383, 528? 531 (1996).

    CAS  PubMed  Google Scholar 

  74. Sanjay, A. et al. Cbl associates with Pyk2 and Src to regulate Src kinase activity, α vβ3 integrin-mediated signaling, cell adhesion, and osteoclast motility. J. Cell. Biol. 152, 181?195 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Meng, F. & Lowell, C. A. A β1 integrin signaling pathway involving Src-family kinases, Cbl and PI-3 kinase is required for macrophage spreading and migration. EMBO J. 17, 4391 ?4403 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Andoniou, C. E. et al. The Cbl proto-oncogene product negatively regulates the Src-family tyrosine kinase Fyn by enhancing its degradation. Mol. Cell. Biol. 20, 851?867 ( 2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Donovan, J. A., Wange, R. L., Langdon, W. Y. & Samelson, L. E. The protein product of the c-cbl protooncogene is the 120-kDa tyrosine-phosphorylated protein in Jurkat cells activated via the T cell antigen receptor. J. Biol. Chem. 269, 22921?22924 (1994).

    CAS  PubMed  Google Scholar 

  78. Rellahan, B. L., Graham, L. J., Stocia, B., DeBell, K. E. & Bonvini, E. Cbl-mediated regulation of T cell receptor-induced AP-1 activation. J. Biol. Chem. 272 , 30806?30811 (1997).

    CAS  PubMed  Google Scholar 

  79. Zhang, Z., Elly, C., Altman, A. & Liu, Y.-C. Dual regulation of T cell receptor-mediated signaling by oncogenic Cbl mutant 70Z. J. Biol. Chem. 274, 4883?4889 (1999).

    CAS  PubMed  Google Scholar 

  80. Zhang, Z., Elly, C., Qiu, L., Altman, A. & Liu, Y.-C. A direct interaction between the adaptor protein Cbl-b and the kinase Zap-70 induces a positive signal in T cells. Curr. Biol. 9, 203?206 ( 1999).

    CAS  PubMed  Google Scholar 

  81. van Leeuwen, J. E. M., Paik, P. K. & Samelson, L. E. Activation of nuclear factor of activated T cells (NFAT) and activating protein 1 (AP-1) by oncogenic 70Z Cbl requires an intact phosphotyrosine binding domain but not Crk(L) or p85 phosphatidylinositol 3-kinase association. J. Biol. Chem. 274, 5153?5162 (1999).

    CAS  PubMed  Google Scholar 

  82. van Leeuwen, J. E. M., Paik, P. K. & Samelson, L. E. The oncogenic 70Z Cbl mutation blocks the phosphotyrosine binding domain-dependent negative regulation of ZAP-70 by c-Cbl in Jurkat T cells. Mol. Cell. Biol. 19, 6652? 6664 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Boussiotis, V. A., Freeman, G. J., Berezovskaya, A., Barber, D. L. & Nadler, L. M. Maintenance of human T cell anergy: blocking of IL-2 gene transcription by activated Rap1. Science 278, 124?128 ( 1997).

    CAS  PubMed  Google Scholar 

  84. Chan, A. C. et al. Activation of ZAP-70 kinase activity by phosphorylation of tyrosine 493 is required for lymphocyte antigen receptor function. EMBO J. 14, 2499?2508 ( 1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Wange, R. L. et al. Activating and inhibitory mutations in adjacent tyrosines in the kinase domain of ZAP-70. J. Biol. Chem. 270, 18730?18733 (1995).

    CAS  PubMed  Google Scholar 

  86. Bachmaier, K. et al. Negative regulation of lymphocyte activation and autoimmunity by the molecular adaptor Cbl-b. Nature 403, 211?216 (2000).

    CAS  PubMed  Google Scholar 

  87. Chiang, Y. J. et al. Cbl-b regulates the CD28 dependence of T-cell activation. Nature 403, 216?220 ( 2000).

    CAS  PubMed  Google Scholar 

  88. Krawczyk, C. et al. Cbl-b is a negative regulator of receptor clustering and raft aggregation in T cells. Immunity 13, 463 ?473 (2000).References 86 88 provided evidence that Cbl-b selectively suppresses TCR-mediated Vav activation and that Cbl-b-deficient mice are highly susceptible to autoimmune disease.

    CAS  PubMed  Google Scholar 

  89. Bustelo, X. R., Crespo, P., López-Barahona, M., Gutkind, J. S. & Barbacid, M. Cbl-b, a member of the Sli-1/c-Cbl protein family, inhibits Vav-mediated c-Jun N-terminal kinase activation. Oncogene 15, 2511?2520 ( 1997).

    CAS  PubMed  Google Scholar 

  90. Andoniou, C. E., Thien, C. B. F. & Langdon, W. Y. Tumour induction by activated abl involves tyrosine phosphorylation of the product of the cbl oncogene. EMBO J. 13, 4515?4523 ( 1994).Identified an acutely transforming c-Cbl protein in the 70Z/3 mouse pre-B cell lymphoma. This form of c-Cbl has 17-amino-acid deletion spanning the α-helix of the linker domain (that separates the SH2 and RING finger domains) and the first two residues of the RING finger.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Thien, C. B. F. & Langdon, W. Y. Tyrosine kinase activity of the EGF receptor is enhanced by the expression of oncogenic 70Z-Cbl . Oncogene 15, 2909?2919 (1997).

    CAS  PubMed  Google Scholar 

  92. Feshchenko, E. A., Shore, S. K. & Tsygankov, A. Y. Tyrosine phosphorylation of c-Cbl facilitates adhesion and spreading while suppressing anchorage-independent growth of v-Abl-transformed NIH3T3 fibroblasts. Oncogene 18, 3703? 3715 (1999).

    CAS  PubMed  Google Scholar 

  93. Scaife, R. M. & Langdon, W. Y. c-Cbl localizes to actin lamellae and regulates lamellipodia formation and cell morphology. J. Cell Sci. 113, 215?226 ( 2000).

    CAS  PubMed  Google Scholar 

  94. Graham, L. J. et al. Differential effects of Cbl and 70Z/3 Cbl on T cell receptor-induced phospholipase Cγ-1 activity. FEBS Lett. 470, 273?280 (2000).

    CAS  PubMed  Google Scholar 

  95. Ueno, H. et al. c-Cbl is tyrosine-phosphorylated by interleukin-4 and enhances mitogenic and survival signals of interleukin-4 receptor by linking with the phosphatidylinositol 3'-kinase pathway. Blood 91, 46?53 (1998).

    CAS  PubMed  Google Scholar 

  96. Grishin, A. et al. Involvement of Shc and Cbl-PI 3-kinase in Lyn-dependent proliferative signaling pathways for G-CSF. Oncogene 19, 97?105 (2000).

    CAS  PubMed  Google Scholar 

  97. Garcia-Guzman, M., Larsen, E. & Vuori, K. The proto-oncogene c-Cbl is a positive regulator of Met-induced MAP kinase activation: a role for the adaptor protein Crk. Oncogene 19, 4058?4065 ( 2000).

    CAS  PubMed  Google Scholar 

  98. Mastick, C. C. & Saltiel, A. R. Insulin-stimulated tyrosine phosphorylation of caveolin is specific for the differentiated adipocyte phenotype in 3T3-L1 cells. J. Biol. Chem. 272, 20706?20714 (1997).

    CAS  PubMed  Google Scholar 

  99. Baumann, C. A. et al. CAP defines a second signalling pathway required for insulin-stimulated glucose transport. Nature 407, 202? 207 (2000).Identifies c-Cbl as a key adaptor molecule in a complex with CAP and flotillin. The complex is localized to lipid raft subdomains and mediates a second signal required for glucose transport.

    CAS  PubMed  Google Scholar 

  100. Ojaniemi, M., Martin, S. S., Dolfi, F., Olefsky, J. M. & Vuori, K. The proto-oncogene product p120cbl links c-Src and phosphatidylinositol 3′-kinase to the integrin signaling pathway. J. Biol. Chem. 272, 3780? 3787 (1997).

    CAS  PubMed  Google Scholar 

  101. Sattler, M. et al. Differential signaling after β1 integrin ligation is mediated through binding of CrkL to p120CBL and p110HEF1. J. Biol. Chem. 272, 14320 ?14326 (1997).

    CAS  PubMed  Google Scholar 

  102. Zell, T. et al. Regulation of β1-integrin-mediated cell adhesion by the Cbl adaptor protein. Curr. Biol. 8, 814? 822 (1998).

    CAS  PubMed  Google Scholar 

  103. Kirsch, K. et al. The adaptor type protein CMS/CD2AP binds to the proto-oncogenic protein c-Cbl through a tyrosine phosphorylation-regulated Src homology 3 domain interaction. J. Biol. Chem. 276, 4957?4963 (2001).

    CAS  PubMed  Google Scholar 

  104. Uemura, N. & Griffin, J. D. The adapter protein Crkl links Cbl to C3G after integrin ligation and enhances cell migration. J. Biol. Chem. 274, 37525?37532 (1999).

    CAS  PubMed  Google Scholar 

  105. Ribon, V., Herrera, R., Kay, B. K. & Saltiel, A. R. A role for CAP, a novel, multifunctional Src homology 3 domain-containing protein in formation of actin stress fibers and focal adhesion. J. Biol. Chem. 273, 4073?4080 ( 1998).

    CAS  PubMed  Google Scholar 

  106. Take, H. et al. Cloning and characterization of a novel adaptor protein, CIN 85, that interacts with c-Cbl. Biochem. Biophys. Res. Comm. 268, 321?328 (2000).

    CAS  PubMed  Google Scholar 

  107. Yoon, C. H., Chang, C., Hopper, N. A., Lesa, G. M. & Sternberg, P. W. Requirements of multiple domains of SLI-1, a Caenorhabditis elegans homologue of c-Cbl, and an inhibitory tyrosine in LET?23 in regulating vulval differentiation. Mol. Biol. Cell 11, 4019?4031 ( 2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Terrell, J., Shih, S., Dunn, R. & Hicke, L. A function for monoubiquitination in the internalization of a G protein-coupled receptor. Mol. Cell 1, 193?202 ( 1998).

    CAS  PubMed  Google Scholar 

  109. Nakatsu, F. et al. A di-leucine signal in the ubiquitin moiety. J. Biol. Chem. 275, 26213?26219 (2000).

    CAS  PubMed  Google Scholar 

  110. Thrower, J. S., Hoffman, L., Rechsteiner, M. & Pickart, C. M. Recognition of the polyubiquitin proteolytic signal. EMBO J. 19, 94?102 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Bonifacino, J. S. & Weissman, A. M. Ubiquitin and the control of protein fate in the secretory and endocytic pathways. Annu. Rev. Cell Dev. Biol. 14, 19? 57 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Ciechanover, A. The ubiquitin-proteasome pathway: on protein death and cell life. EMBO J. 17, 7151?7160 ( 1998).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank N. Zheng and N. Pavletich for providing the structural figures, and H. Gu, D. Bowtell and M. Murphy for providing unpublished results on the Cbl-knockout mice.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASE LINKS

c-Cbl

Cbl family

Cbl-b

Cbl-3

D-Cbl

SLI-1

EGFR

PDGFR

ZAP-70

Syk

EF hand

SH2 domain

RING finger

Sprouty

FGFR

SH3-domain

14-3-3 protein

Fyn

Yes

Lyn

Abl

Vav1

Cdc42

UBA domain

LET-23

LET-60

Grb2

SEM-5

colony-stimulating factor 1 receptor

UBCH7

ErbB2

Fos

Jun

NF-AT

CrkL

C3G

Rap1

CD28

Akt

Met

scatter factor

CAP

ENCYCLOPEDIA OF LIFE SCIENCES

Antigen recognition by lymphocytes

Ubiquitin pathway

Glossary

UBIQUITIN-CONJUGATING ENZYME (E2)

An enzyme that accepts ubiquitin from a ubiquitin-activating enzyme and transfers it to a ubiquitin ligase which, in turn, transfers it to a substrate protein.

MULTI-UBIQUITYLATION

The sequential addition of the small protein ubiquitin to a target protein, to form a chain of isopeptide-linked ubiquitin molecules. This is a signal for proteolytic cleavage in the proteasome.

BONE RESORPTION

The digestion of mineralized bone tissue by specialized cells called osteoclasts.

ECOTROPIC

A classification for viruses that only replicate in cells of the species from which they were derived, for example, mouse ecotropic retroviruses replicate in mouse but not foreign cells.

C3HC4 RING FINGER

A protein domain containing two interleaved zinc-coordinating sites. In the first site, the zinc is coordinated by three cysteines and a histidine (C3H), whereas in the second it is coordinated by four cysteines (C4).

UBIQUITIN PROTEIN LIGASE (E3)

An enzyme that couples the small protein ubiquitin to lysine residues on a target protein, marking that protein for destruction by the proteasome.

SH3 DOMAINS

(Src-homology region 3). Protein sequence of about 50 amino acids that recognizes and binds sequences rich in proline.

CRK

Adaptor protein first described as the product of an avian oncogene, v- Crk, that contains an amino-terminal SH2 domain and two SH3 domains that function as binding sites for a diverse set of signalling proteins.

VULVAL INDUCTION

A readily accessible genetic system in Caenorhabditis elegans for studying the induction and regulation of epidermal growth factor receptor signalling pathways in vivo.

R7 PHOTORECEPTOR CELLS

A readily accessible genetic system in Drosophila melanogaster for studying the induction and regulation of epidermal growth factor receptor signalling pathways in vivo.

ANERGY

A state in which T cells cannot respond to antigen.

T-CELL CO-RECEPTOR

Receptor on T cells that binds accessory molecules on antigen-presenting cells and, when engaged along with the T-cell receptor (TCR), provides either a co-stimulatory (for example, CD28) or an inhibitory (for example, CTLA-4) signal with respect to T-cell activation.

LIPID RAFTS

Dynamic assemblies of cholesterol and sphingolipids in the plasma membrane.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thien, C., Langdon, W. Cbl: many adaptations to regulate protein tyrosine kinases. Nat Rev Mol Cell Biol 2, 294–307 (2001). https://doi.org/10.1038/35067100

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35067100

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing