Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Rapid collisional evolution of comets during the formation of the Oort cloud


The Oort cloud1 of comets was formed by the ejection of icy planetesimals from the region of giant planets—Jupiter, Saturn, Uranus and Neptune—during their formation2. Dynamical simulations3,4 have previously shown that comets reach the Oort cloud only after being perturbed into eccentric orbits that result in close encounters with the giant planets, which then eject them to distant orbits about 104 to 105AU from the Sun (1 AU is the average Earth–Sun distance). All of the models constructed until now simulate formation of the Oort cloud using only gravitational effects; these include the influence of the Sun, the planets and external perturbers such as passing stars and Galactic tides. Here we show that physical collisions between comets and small debris play a fundamental and hitherto unexplored role throughout most of the ejection process. For standard models of the protosolar nebula (starting with a minimum-mass nebula) we find that collisional evolution of comets is so severe that their erosional lifetimes are much shorter than the timescale for dynamical ejection. It therefore appears that collisions will prevent most comets escaping from most locations in the region of the giant planets until the disk mass there declines sufficiently that the dynamical ejection timescale is shorter than the collisional lifetime. One consequence is that the total mass of comets in the Oort cloud may be less than currently believed.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Estimated time required for cometary nuclei to collide with 50% of their own mass in solids in the solar nebula as a function of distance from the Sun.
Figure 2: Estimated erosion lifetimes for icy planetesimals, embedded in a disk-like, primordial solar nebula between 5 and 50 AU from the Sun.


  1. 1

    Oort, J. H. The structure of a cloud of comets surrounding the solar system and a hypothesis concerning its structure. Bull. Astron. Inst. Neth. 11, 91–110 (1950).

    ADS  Google Scholar 

  2. 2

    Kuiper, G. P. in Astrophysics: A Topical Symposium (ed. Hynek, J. A.) 357–424 (McGraw Hill, New York, 1951).

    Google Scholar 

  3. 3

    Gladman, B. & Duncan, M. J. Fates of minor bodies in the outer solar system. Astron. J. 100, 1680–1693 (1990).

    ADS  Article  Google Scholar 

  4. 4

    Dones, L., Levison, H. F., Duncan, M. J. & Weissman, P. R. Formation of the Oort cloud revisited. Bull. Am. Astron. Soc. 32, 1060 (2000).

    ADS  Google Scholar 

  5. 5

    Wuchterl, G., Guillot, T. & Lissauer, J. J. in Protostars and Planets IV (eds Mannings, V., Boss, A. P. & Russel, S. S.) 1081–1110 (Univ. Arizona Press, Tucson, 2000).

    Google Scholar 

  6. 6

    Lissauer, J. J. Time scales for planetary accretion and the structure of the protoplanetary disk. Icarus 69, 249–267 (1987).

    ADS  Article  Google Scholar 

  7. 7

    Pollack, J. B., Burns, J. A. & Tauber, M. E. Gas drag in primordial circumplanetary envelopes: A mechanism for satellite capture. Icarus 37, 587–611 (1979).

    ADS  Article  Google Scholar 

  8. 8

    Grazier, K., Newman, W. I., Kaula, W. M. & Hyman, J. M. Dynamical evolution of planetesimals in the outer solar system I. Icarus 140, 341–252 (1999).

    ADS  Article  Google Scholar 

  9. 9

    Grazier, K., Newman, W. I., Kaula, W. M. & Hyman, J. M. Dynamical evolution of planetesimals in the outer solar system II. Icarus 140, 353–368 (1999).

    ADS  Article  Google Scholar 

  10. 10

    Stern, S. A. Collisional timescales and the architecture of the ancient, massive Kuiper disk. Astron. J. 112, 1203–1210 (1996).

    ADS  Article  Google Scholar 

  11. 11

    Stern, S. A. & Colwell, J. E. Collisional erosion in the Edgeworth-Kuiper belt. Astrophys. J. 490, 879–884 (1997).

    ADS  Article  Google Scholar 

  12. 12

    Wetherill, G. W. Comparison of analytical and physical modelling of planetesimal accumulation. Icarus 88, 336–354 (1990).

    ADS  Article  Google Scholar 

  13. 13

    Housen, K. R. & Holsapple, K. A. On the fragmentation of asteroids and planetary satellites. Icarus 84, 226–253 (1990).

    ADS  Article  Google Scholar 

  14. 14

    Dohnanyi, J. S. Collisional model of asteroids and their debris. J. Geophys. Res. 74, 2531–2554 (1969).

    ADS  Article  Google Scholar 

  15. 15

    Holman, M. J. & Wisdom, J. Dynamical stability in the outer solar system and the delivery of short period comets. Astron. J. 105, 1987–1999 (1993).

    ADS  Article  Google Scholar 

  16. 16

    Stern, S. A. Collisions in the Oort cloud. Icarus 73, 499–505 (1988).

    ADS  Article  Google Scholar 

  17. 17

    Duncan, M. J., Quinn, T. & Tremaine, S. The formation and extent of the solar system Oort cloud. Astron. J. 94, 1330–1338 (1987).

    ADS  Article  Google Scholar 

  18. 18

    Weissman, P. R. in Completing the Inventory of the Solar System (eds Rettig, T. W. & Hahn, J. M.) 265–288 (ASP Conf. Ser. 107, Astronomical Society of the Pacific, San Francisco, 1996).

    Google Scholar 

  19. 19

    Everhart, E. Comet discoveries and observational selection. Astron. J. 72, 716–726 (1967).

    ADS  Article  Google Scholar 

  20. 20

    Bailey, M. E. & Stagg, C. R. Cratering constraints on the inner Oort cloud and implications for cometary origins. Mon. Not. R. Astron. Soc. 235, 1–32 (1988).

    ADS  Article  Google Scholar 

  21. 21

    Safronov, V. S. Kuiper prize lecture: Some problems in the formation of the planets. Icarus 94, 260–271 (1991).

    ADS  Article  Google Scholar 

  22. 22

    Thommes, E. W., Duncan, M. J. & Levison, H. F. The formation of Uranus and Neptune in the Jupiter–Saturn region of the Solar System. Nature 402, 635–638 (1999).

    ADS  CAS  Article  Google Scholar 

  23. 23

    Lissauer, J. J., Pollack, J. B., Wetherill, G. W. & Stevenson, D. J. in Neptune and Triton (eds Cruikshank, D. P. & Matthews, M. S.) 37–108 (Univ. Arizona Press, Tucson, 1995).

    Google Scholar 

  24. 24

    Mumma, M. J. in From Stardust to Planetesimals (eds Pendelton, Y. J. & Tielens, A. G. G. M.) 369–396 (ASP Conf. Ser. 122, Astronomical Society of the Pacific, San Francisco, 1997).

    Google Scholar 

  25. 25

    Blake, G. A., Hogerheijde, M. R., Gurwell, M. A. & Muhleman, D. O. Sublimation from icy jets as a probe of the interstellar volatile content of comets. Nature 398, 213–216 (1999).

    ADS  CAS  Article  Google Scholar 

  26. 26

    Stern, S. A. et al. The discovery of argon in comet C/1995 O1 (Hale-Bopp). Astrophys. J. 545, L169–172 (2000).

    ADS  Article  Google Scholar 

  27. 27

    Sekanina, Z. in Comets (ed. Wilkening, L. L.) 251–287 (Univ. Arizona Press, Tucson, 1982).

    Google Scholar 

Download references


We thank M. Duncan, K. Grazier and H. Levison for discussions, and D. Durda, W. Merline, A. Morbidelli, W. Ward and most particularly L. Dones for comments on this manuscript. This work was performed in part at the Jet Propulsion Laboratory under contract with NASA, and was supported by the NASA Planetary Geology and Geophysics and NASA Origins Programs.

Author information



Corresponding author

Correspondence to S. Alan Stern.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Stern, S., Weissman, P. Rapid collisional evolution of comets during the formation of the Oort cloud. Nature 409, 589–591 (2001).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing