Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

At the interfaces of epidemiology, genetics and genomics


You come onto the court prepared for tennis but your partner seems to be ready for rugby. Neither of you is at all sure what it is that your opponent wants to play. The only recourse is to teach each other the rules of your own game and then decide whether you can collectively invent a new sport. Welcome to the dialogue at the intersections of epidemiology with genetics and genomics.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental and observational designs for microarray gene-expression studies.


  1. Doll, R. & Hill, A. B. A study of the aetiology of carcinoma of the lung. Br. Med. J. 2, 1271– 1286 (1952).

    Article  CAS  Google Scholar 

  2. Beaty, T. H. & Khoury, M. J. Interface of genetics and epidemiology . Epidemiol. Rev. 22, 120– 125 (2000).

    Article  CAS  Google Scholar 

  3. Holtzman, N. A. & Martineau, T. M. Will genetics revolutionize medicine? N. Engl. J. Med. 343, 141–144 (2000).

    Article  CAS  Google Scholar 

  4. Perou, C. M. et al. Molecular portraits of human breast tumours. Nature 406, 747–752 ( 2000).

    Article  CAS  Google Scholar 

  5. Vogelstein, B. et al. Allelotype of colorectal carcinomas. Science 244, 207–211 (1989).

    Article  CAS  Google Scholar 

  6. Alon, U. et al. Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proc. Natl Acad. Sci. USA 96, 6745– 6750 (1999).

    Article  CAS  Google Scholar 

  7. Prevo, L. J., Sanchez, C. A., Galipeau, P. C. & Reid, B. J. p53-mutant clones and field effects in Barrett's esophagus. Cancer Res. 59, 4784–4787 (1999).

    CAS  PubMed  Google Scholar 

  8. Golub, T. R. et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286 , 531–536 (1999).

    Article  CAS  Google Scholar 

  9. Hopper, J. L. et al. Population-based estimate of the average age-specific cumulative risk of breast cancer for a defined set of protein-truncating mutations in BRCA1 and BRCA2. Cancer Epidemiol. Biomarkers Prev. 8, 741–747 ( 1999).

    CAS  PubMed  Google Scholar 

  10. Friedman, L. et al. The search for BRCA1. Cancer Res. 54, 6374–6382 (1994).

    CAS  PubMed  Google Scholar 

  11. Struewing, J. et al. The risk of cancer associated with specific mutations of BRCA1 and BRCA2 among Ashkenazi Jews. N. Engl. J. Med. 336, 1401–1408 ( 1997).

    Article  CAS  Google Scholar 

  12. Warner, E. et al. Prevalence and penetrance of BRCA1 and BRCA2 gene mutations in unselected Ashkenazi Jewish women with breast cancer. J. Natl Cancer Instit. 91, 1241–1247 (1999). PubMed

    Article  CAS  Google Scholar 

  13. Peto, J. et al. Prevalence of BRCA1 and BRCA2 gene mutations in patients with early-onset breast cancer. J. Natl Cancer Inst. 91, 943–949 (1999).

    Article  CAS  Google Scholar 

  14. Malone, K. E. et al. Frequency of BRCA1/BRCA2 mutations in a population-based sample of young breast carcinoma cases. Cancer 88, 1393–1402 (2000).

    Article  CAS  Google Scholar 

  15. Newman, B. et al. Frequency of breast cancer attributable to BRCA1 in a population-based series of American women. J. Am. Med. Assoc. 279, 915–921 ( 1998). PubMed

    Article  CAS  Google Scholar 

  16. Hansen, M. F. et al. Osteosarcoma and retinoblastoma: a shared chromosomal mechanism reveals recessive predisposition. Proc. Natl Acad. Sci. USA 82, 6216–6220 (1985).

    Article  CAS  Google Scholar 

  17. Onadim, Z., Hogg, A., Baird, P. N. & Cowell, J. K. Oncogenic point mutations in exon 20 of the RB1 gene in families showing incomplete penetrance and mild expression of the retinoblastoma phenotype. Proc. Natl Acad. Sci. USA 89, 6177– 6181 (1992).

    Article  CAS  Google Scholar 

  18. Otterson, G. A., Chen, W. -d., Coxon, A. B., Khleif, S. N. & Kaye, F. J. Incomplete penetrance of familial retinoblastoma linked to germ-line mutations that result in partial loss of RB function. Proc. Natl Acad. Sci. USA 94, 12036–12040 (1997).

    Article  CAS  Google Scholar 

  19. MacPhee, M. et al. The secretory phospholipase A2 gene is a candidate for the Mom1 locus, a major modifier of APC Min-induced intestinal neoplasia. Cell 81, 957–966 ( 1995).

    Article  CAS  Google Scholar 

  20. Takaku, K. et al. Intestinal tumorigenesis in compound mutant mice of both Dpc4 (Smad4) and Apc genes. Cell 92, 645–656 (1998).

    Article  CAS  Google Scholar 

  21. Laird, P. W. et al. Suppression of intestinal neoplasia by DNA hypomethylation . Cell 81, 197–205 (1995).

    Article  CAS  Google Scholar 

  22. Lynch, H. & de la Chapelle, A. Cancer susceptibility to non-polyposis colorectal cancer. J. Med. Genet. 36, 801–818 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Yan, H. et al. Conversion of diploidy to haploidy. Nature 403, 723–724 (2000).

    Article  CAS  Google Scholar 

  24. Warthin, A. S. Heredity with reference to carcinoma. Arch. Int. Med. 12, 546–555 (1913).

    Article  Google Scholar 

  25. Lynch, H. T., Lynch, P. M., Albana, W. A. & Lynch, J. F. The cancer syndrome: a status report. Dis. Col. Rect. 24, 311–322 (1981).

    Article  CAS  Google Scholar 

  26. Coleman, M. P., Esteve, J., Damiecki, P., Arslan, A. & Renard, H. Trends in Cancer Incidence and Mortality (Oxford Univ. Press, Lyon, 1993).

    Google Scholar 

  27. Potter, J. D. Colorectal cancer: molecules and populations. J. Natl Cancer Inst. 91, 916–932 ( 1999).

    Article  CAS  Google Scholar 

  28. Taylor, J. et al. The role of N-acetylation polymorphisms in smoking-associated bladder cancer: evidence of a gene-gene-exposure three-way interaction. Cancer Res. 58, 3603–3610 (1998).

    CAS  PubMed  Google Scholar 

  29. Potter, J. D. et al. Colorectal adenomatous and hyperplastic polyps: smoking and N-Acetyltransferase 2 polymorphisms. Cancer Epidemiol. Biomarkers Prev. 8, 69–75 ( 1999).

    CAS  PubMed  Google Scholar 

  30. Ulrich, C. et al. Colorectal adenomas and the C677T MTHFR polymorphism: Evidence for gene-environment interaction? Cancer Epidemiol. Biomarkers Prev. 8, 659–668 ( 1999).

    CAS  PubMed  Google Scholar 

  31. Marcus, P. M. et al. Cigarette smoking, N-acetyltransferase 2 acetylation status, and bladder cancer risk: a case-series meta-analysis of a gene-environment interaction. Cancer Epidemiol. Biomarkers Prev. 9, 461–467 (2000).

    CAS  PubMed  Google Scholar 

  32. Jarvik, G. Genetic predictors of common disease: apolipoprotein E genotype as a paradigm . Ann. Epidemiol. 7, 357– 362 (1997).

    Article  CAS  Google Scholar 

  33. Altshuler, D. et al. The common PPARγ pro12Ala polymorphism is associated with decreased risk of type 2 diabetes. Nature Genet. 26, 76–79 (2000).

    Article  CAS  Google Scholar 

  34. Sing, C. F. & Davignon, J. Role of the apolipoprotein E polymorphism in determining normal plasma lipid and lipoprotein variation. Am. J.Hum. Genet. 37, 268–285 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations


Related links

Related links


adenomatous polyposis of the colon





hereditary non-polyposis colorectal cancer




non-insulin-dependent diabetes mellitus



National Human Genome Research Institute's glossary of genetic terms

Gene Ontology Consortium

John D. Potter homepage



Observational study of people with known levels of exposures to causal or protective agents, who are followed over a period of time; disease rates are compared between the exposed and the unexposed.


Randomized (experimental) study in which all study subjects undergo all treatments in a random order.


Observational study of characteristics of groups: often those with, versus those without, disease at a single point in time.


Widespread molecular changes in normal or relatively normal tissue that predispose a person to cancer.


An estimation of the ability of a given study size and design to provide a measure of relative risk within a preset limit of precision or with a preset likelihood of providing a false positive and false null finding.


Biologically active molecules that can be ingested or inhaled and that include potential carcinogens, such as heterocyclic amines, and potentially cancer-protective compounds, such as indoles.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Potter, J. At the interfaces of epidemiology, genetics and genomics. Nat Rev Genet 2, 142–147 (2001).

Download citation

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing