Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Improving enzymes by using them in organic solvents

Abstract

The technological utility of enzymes can be enhanced greatly by using them in organic solvents rather than their natural aqueous reaction media. Studies over the past 15 years have revealed not only that this change in solvent is feasible, but also that in such seemingly hostile environments enzymes can catalyse reactions impossible in water, become more stable, and exhibit new behaviour such as 'molecular memory'. Of particular importance has been the discovery that enzymatic selectivity, including substrate, stereo-, regio- and chemoselectivity, can be markedly affected, and sometimes even inverted, by the solvent. Enzyme-catalysed reactions in organic solvents, and even in supercritical fluids and the gas phase, have found numerous potential applications, some of which are already commercialized.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Structural modelling of enzymatic transition states.
Figure 2: Schematic representation of the ligand-induced imprinting of the enzyme active site.

References

  1. 1

    Roberts, S. M., Turner, N. J., Willetts, A. J. & Turner, M. K. Introduction to Biocatalysis Using Enzymes and Microorganisms (Cambridge Univ. Press, New York, 1995).

    Google Scholar 

  2. 2

    Faber, K. Biotransformations in Organic Chemistry 4th edn (Springer, Berlin, 2000).

    Google Scholar 

  3. 3

    Zaks, A. & Dodds, D. R. Application of biocatalysis and biotransformations to the synthesis of pharmaceuticals. Drug Disc. Today 2, 513–531 ( 1997).

    CAS  Article  Google Scholar 

  4. 4

    Stinson, S. C. Counting on chiral drugs. Chem. Eng. News 76, 83–96 (1998).

    Article  Google Scholar 

  5. 5

    Nelson, D. L. & Cox, M. M. Lehninger Principles of Biochemistry 3rd edn, 192 (Worth, New York, 2000).

    Google Scholar 

  6. 6

    Lapanje, S. Physicochemical Aspects of Protein Denaturation Chs 1–3 & 6 (Wiley, New York, 1978).

    Google Scholar 

  7. 7

    Griebenow, K. & Klibanov, A. M. On protein denaturation in aqueous-organic mixtures but not in pure organic solvents. J. Am. Chem. Soc. 47, 11695–11700 (1996).

    Article  Google Scholar 

  8. 8

    Kuntz, I. D. & Kauzmann, W. Hydration of proteins and polypeptides . Adv. Protein Chem. 28, 239– 345 (1974).

    CAS  Article  Google Scholar 

  9. 9

    Rupley, J. A. & Careri, G. Protein hydration and function. Adv. Protein Chem. 41, 37–172 (1991).

    CAS  Article  Google Scholar 

  10. 10

    Fitzpatrick, P. A., Steinmetz, A. C. U., Ringe, D. & Klibanov, A. M. Enzyme crystal structure in a neat organic solvent. Proc. Natl Acad. Sci. USA 90, 8653–8657 (1993).

    ADS  CAS  Article  Google Scholar 

  11. 11

    Yennawar, N. H., Yennawar, H. P. & Farber, G. K. X-ray crystal structure of γ-chymotrypsin in hexane. Biochemistry 33, 7326– 7337 (1994).

    CAS  Article  Google Scholar 

  12. 12

    Schmitke, J. L., Stern, L. J. & Klibanov, A. M. Crystal structure of subtilisin Carlsberg in anhydrous dioxane and its comparison with those in water and acetonitrile. Proc. Natl Acad. Sci. USA 94, 4250– 4255 (1997).

    ADS  CAS  Article  Google Scholar 

  13. 13

    Zhu, G. et al. X-ray studies on two forms of bovine β-crystals in neat cyclohexane . Biochim. Biophys. Acta 1429, 142– 150 (1998).

    CAS  Article  Google Scholar 

  14. 14

    Gao, X.-G. et al. Crystal structure of triosephosphate isomerase from Trypanosoma cruzi in hexane. Proc. Natl Acad. Sci. USA 96, 10062–10067 (1999).

    ADS  CAS  Article  Google Scholar 

  15. 15

    Klibanov, A. M. Enzymatic catalysis in anhydrous organic solvents. Trends Biochem. Sci. 14, 141–144 ( 1989).

    CAS  Article  Google Scholar 

  16. 16

    Koskinen, A. M. P. & Klibanov, A. M. (eds) Enzymatic Reactions in Organic Media (Blackie-Pergamon, London, 1996).

    Google Scholar 

  17. 17

    Zaks, A. & Klibanov, A. M. Enzyme-catalyzed processes in organic solvents. Proc. Natl Acad. Sci. USA 82, 3192–3196 (1985).

    ADS  CAS  Article  Google Scholar 

  18. 18

    Klibanov, A. M. Why are enzymes less active in organic solvents than in water? Trends Biotechnol. 15, 97–101 (1997).

    CAS  Article  Google Scholar 

  19. 19

    Schmitke, J. L., Wescott, C. R. & Klibanov, A. M. The mechanistic dissection of the plunge in enzymatic activity upon transition from water to anhydrous solvents. J. Am. Chem. Soc. 118, 3360–3365 (1996).

    CAS  Article  Google Scholar 

  20. 20

    Zaks, A. & Klibanov, A. M. Enzymatic catalysis in non-aqueous solvents J. Biol. Chem. 263, 3194– 3201 (1988).

    CAS  PubMed  Google Scholar 

  21. 21

    Xu, K. & Klibanov, A. M. pH-control of the catalytic activity of cross-linked enzyme crystals in organic solvents. J. Am. Chem. Soc. 118, 9815–9819 (1996).

    CAS  Article  Google Scholar 

  22. 22

    Blackwood, A. D., Curran, L. J., Moore, B. D. & Halling, P. J. Organic-phase buffers control biocatalyst activity independent of initial aqueous pH. Biochim. Biophys. Acta 1206, 161–165 (1994).

    CAS  Article  Google Scholar 

  23. 23

    Griebenow, K. & Klibanov, A. M. Can conformational changes be responsible for solvent and excipient effects on the catalytic behavior of subtilisin Carlsberg in organic solvents? Biotechnol. Bioeng. 53, 351–362 (1997).

    CAS  Article  Google Scholar 

  24. 24

    Griebenow, K. & Klibanov, A. M. Lyophilization-induced changes in the secondary structure of proteins. Proc. Natl Acad. Sci. USA 92, 10969–10976 ( 1995).

    ADS  CAS  Article  Google Scholar 

  25. 25

    Dabulis, K. & Klibanov, A. M. Dramatic enhancement of enzymatic activity in organic solvents by lyoprotectants. Biotechnol. Bioeng. 41, 566–571 ( 1993).

    CAS  Article  Google Scholar 

  26. 26

    Dai, L. & Klibanov, A. M. Striking activation of oxidative enzymes suspended in nonaqueous media. Proc. Natl. Acad. Sci. USA 96, 9475–9478 ( 1999).

    ADS  CAS  Article  Google Scholar 

  27. 27

    Khmelnitsky, Y. L., Welch, S. H., Clark, D. S. & Dordick, J. S. Salts dramatically enhance activity of enzymes suspended in organic solvents . J. Am. Chem. Soc. 116, 2647– 2648 (1994).

    CAS  Article  Google Scholar 

  28. 28

    Russell, A. J. & Klibanov, A. M. Inhibitor-induced enzyme activation in organic solvents. J. Biol. Chem. 263, 11624–11626 (1988).

    CAS  PubMed  Google Scholar 

  29. 29

    Broos, J., Sakodinskaya, I. K., Engbersen, J. F. J., Verboom, W. & Reinhoudt, D. N. Large activation of serine proteases by pretreatment with crown ethers. J. Chem. Soc. Chem. Commun. 255–256 (1995).

  30. 30

    Okahata, Y. & Mori, T. Lipid-coated enzymes as efficient catalysts in organic media. Trends Biotechnol. 15, 50–54 (1997).

    CAS  Article  Google Scholar 

  31. 31

    Paradkar, V. M. & Dordick, J. S. Aqueous-like activity of α-chymotrypsin dissolved in nearly anhydrous organic solvents . J. Am. Chem. Soc. 116, 5009– 5010 (1994).

    CAS  Article  Google Scholar 

  32. 32

    Margolin, A. L. Novel crystalline catalysts. Trends Biotechnol. 14, 223–230 (1996).

    CAS  Article  Google Scholar 

  33. 33

    Jeffrey, J. A. & Saenger, W. Hydrogen Bonding in Biological Structures (Springer, Berlin, 1994).

    Google Scholar 

  34. 34

    Affleck, R., Haynes, C. A. & Clark, D. S. Solvent dielectric effects on protein dynamics. Proc. Natl Acad. Sci. USA 89, 5167– 5170 (1992).

    ADS  CAS  Article  Google Scholar 

  35. 35

    Burke, P. A., Griffin, R. G. & Klibanov, A. M. Solid-state nuclear magnetic resonance investigation of solvent dependence of tyrosyl ring motion in an enzyme. Biotechnol. Bioeng. 42, 87–94 ( 1993).

    CAS  Article  Google Scholar 

  36. 36

    Zaks, A. & Klibanov, A. M. The effect of water on enzyme action in organic media. J. Biol. Chem. 263, 8017–8021 (1988).

    CAS  PubMed  Google Scholar 

  37. 37

    Xu, Z.-F. et al. Transition state stabilization of subtilisins in organic media . Biotechnol. Bioeng. 43, 515– 520 (1994).

    CAS  Article  Google Scholar 

  38. 38

    Bell, G., Halling, P. J., Moore, B. D., Partridge, J. & Rees, D. G. Biocatalyst behaviour in low-water systems. Trends Biotechnol. 13, 468– 473 (1995).

    CAS  Article  Google Scholar 

  39. 39

    Almarsson, Ö. & Klibanov, A. M. Remarkable activation of enzymes in nonaqueous media by denaturing organic cosolvents . Biotechnol. Bioeng. 49, 87– 92 (1996).

    CAS  Article  Google Scholar 

  40. 40

    Ahern, T. J. & Klibanov, A. M. Analysis of processes causing thermal inactivation of enzymes. Methods Biochem. Anal. 33, 91–127 (1987).

    Google Scholar 

  41. 41

    Zaks, A. & Klibanov, A. M. Enzymatic catalysis in organic media at 100 °C. Science 224, 1249– 1251 (1984).

    ADS  CAS  Article  Google Scholar 

  42. 42

    Volkin, D. B., Staubli, A., Langer, R. & Klibanov, A. M. Enzyme thermoinactivation in anhydrous organic solvents. Biotechnol. Bioeng. 37, 843–853 (1991).

    CAS  Article  Google Scholar 

  43. 43

    Garza-Ramos, G., Darszon, A., de Gómez-Puyou, M. T. & Gómez-Puyou, A. Enzyme catalysis in organic solvents with low water content at high temperatures. The ATPase of submitochondrial particles. Biochemistry 29, 751–757 (1990).

    CAS  Article  Google Scholar 

  44. 44

    Fersht, A. Structure and Mechanism in Protein Science: A Guide to Enzyme Catalysis and Protein Folding (Freeman, New York, 1999).

    Google Scholar 

  45. 45

    Wescott, C. R. & Klibanov, A. M. The solvent dependence of enzyme specificity. Biochim. Biophys. Acta 1206, 1–9 (1994).

    CAS  Article  Google Scholar 

  46. 46

    Carrea, G., Ottolina, G. & Riva, S. Role of solvents in the control of enzyme selectivity in organic media. Trends Biotechnol. 13, 63–70 (1995).

    CAS  Article  Google Scholar 

  47. 47

    Zaks, A. & Klibanov A. M. Substrate specificity of enzymes in organic solvents vs. water is reversed. J. Am. Chem. Soc. 108, 2767–2768 ( 1986).

    CAS  Article  Google Scholar 

  48. 48

    Wescott, C. R. & Klibanov, A. M. Solvent variation inverts substrate specificity of an enzyme. J. Am. Chem. Soc. 115, 1629–1631 (1993).

    CAS  Article  Google Scholar 

  49. 49

    Gaertner, H. & Puigserver, A. Kinetics and specificity of serine proteases in peptide synthesis catalyzed in organic solvents. Eur. J. Biochem. 181, 207–213 (1989).

    CAS  Article  Google Scholar 

  50. 50

    Ryu, K. & Dordick, J. S. How do organic solvents affect peroxidase structure and function? Biochemistry 31, 2588–2598 (1992).

    CAS  Article  Google Scholar 

  51. 51

    Wescott, C. R., Noritomi, H. & Klibanov, A. M. Rational control of enzymatic enantioselectivity through solvation thermodynamics. J. Am. Chem. Soc. 118, 10365–10370 (1996).

    CAS  Article  Google Scholar 

  52. 52

    Ke, T., Wescott, C. R. & Klibanov, A. M. Prediction of the solvent dependence of enzymatic prochiral selectivity by means of structure-based thermodynamic calculations . J. Am. Chem. Soc. 118, 3366– 3374 (1996).

    CAS  Article  Google Scholar 

  53. 53

    Wu, S.-H., Chu, F.-Y. & Wang, K.-T. Reversible enantioselectivity of enzymatic reactions by media. Bioorg. Med. Chem. Lett. 1, 339– 342 (1991).

    ADS  CAS  Article  Google Scholar 

  54. 54

    Ueji, S. et al. Solvent-induced inversion of enantioselectivity in lipase-catalyzed esterification of 2-phenoxypropionic acids. Biotechnol. Lett. 14, 163–168 (1992).

    CAS  Article  Google Scholar 

  55. 55

    Tawaki, S. & Klibanov, A. M. Inversion of enzyme enantioselectivity by the solvent. J. Am. Chem. Soc. 114, 1882 –1884 (1992).

    CAS  Article  Google Scholar 

  56. 56

    Rubio, E., Fernandes-Mayorales, A. & Klibanov, A. M. Effect of the solvent on enzyme regioselectivity . J. Am. Chem. Soc. 113, 695– 696 (1991).

    CAS  Article  Google Scholar 

  57. 57

    MacManus, D. A. & Vulfson, E. N. Reversal of regioselectivty in the enzymatic acylation of secondary hydroxyl groups mediated by organic solvents. Enzyme Microb. Technol. 20, 225–228 (1997).

    CAS  Article  Google Scholar 

  58. 58

    Tawaki, S. & Klibanov, A. M. Chemoselectivity of enzymes in anhydrous media is strongly solvent dependent. Biocatalysis 8, 3–19 (1993 ).

    CAS  Article  Google Scholar 

  59. 59

    Ebert, C., Gardossi, L., Linda, P., Vesnaver, R. & Bosco, M. Influence of organic solvents on enzyme chemoselectivity and their role in enzyme-substrate interaction. Tetrahedron 52, 4867–4876 (1996).

    CAS  Article  Google Scholar 

  60. 60

    Klibanov, A. M. Enzyme memory—what is remembered and why? Nature 374, 596 (1995).

    ADS  CAS  Article  Google Scholar 

  61. 61

    Ke, T. & Klibanov, A. M. On enzymatic activity in organic solvents as a function of enzyme history. Biotechnol. Bioeng. 57, 746–750 (1998).

    CAS  Article  Google Scholar 

  62. 62

    Rich, J. O. & Dordick, J. S. Controlling subtilisin activity and selectivity in organic media by imprinting with nucleophilic substrates . J. Am. Chem. Soc. 119, 3245– 3252 (1997).

    CAS  Article  Google Scholar 

  63. 63

    Stahl, M., Jeppson-Wistrand, U., Mansson, M.-O. & Mosbach, K. Induced stereoselectivity and substrate selectivity of bio-imprinted α-chymotrypsin in anhydrous organic media. J. Am. Chem. Soc. 113, 9366–9368 (1991).

    Article  Google Scholar 

  64. 64

    Mingarro, I., González-Navarro, H. & Braco, L. Trapping of different lipase conformers in water-restricted environments. Biochemistry 35, 9935–9944 (1996).

    CAS  Article  Google Scholar 

  65. 65

    Johnson, D. V. & Griengl, H. Biocatalytic applications of hydroxynitrile lyases. Adv. Biochem. Eng. Biotechnol. 63, 31–55 (1999).

    CAS  Google Scholar 

  66. 66

    Ke, T. & Klibanov, A. M. Markedly enhancing enzymatic enantioselectivity in organic solvents by forming substrate salts. J. Am. Chem. Soc. 121, 3334–3340 (1999).

    CAS  Article  Google Scholar 

  67. 67

    Chen, C.-S., Fujimoto, Y., Girdaukas, G. & Sih, C. J. Quantitative analyses of biochemical kinetic resolutions of enantiomers. J. Am. Chem. Soc. 104, 7294–7299 (1982).

    CAS  Article  Google Scholar 

  68. 68

    Bornscheuer, U. T. & Kazlauskas, R. J. Hydrolases in Organic Synthesis—Regio- and Stereoselective Biotransformations (Wiley, Weinheim, 1999).

    Google Scholar 

  69. 69

    Kirchner, G., Scollar, M. P. & Klibanov, A. M. Resolution of racemic mixtures via lipase catalysis in organic solvents. J. Am. Chem. Soc. 107, 7072–7076 (1985).

    CAS  Article  Google Scholar 

  70. 70

    Carrea, G. & Riva, S. Properties and synthetic applications of enzymes in organic solvents. Angew. Chem. 33, 2226–2254 (2000).

    Article  Google Scholar 

  71. 71

    Kitaguchi, H., Fitzpatrick, P. A., Huber, J. E. & Klibanov, A. M. Enzymatic resolution of racemic amines: crucial role of the solvent J. Am. Chem. Soc. 111, 3094–3095 (1989).

    CAS  Article  Google Scholar 

  72. 72

    Gutman, A. L., Meyer, E., Kalerin, E., Polyak, F. & Sterling, J. Enzymatic resolution of racemic amines in a continuous reactor in organic solvents. Biotechnol. Bioeng. 40 , 760–767 (1992).

    CAS  Article  Google Scholar 

  73. 73

    Akkara, J. A., Ayyagari, M. S. R. & Bruno, F. F. Enzymatic synthesis and modification of polymers in nonaqueous solvents. Trends Biotechnol. 17, 67–73 (1999).

    CAS  Article  Google Scholar 

  74. 74

    Chaudhary, A. K., Beckman, E. J. & Russell, A. J. Rational control of polymer molecular weight and dispersity during enzyme-catalyzed polyester synthesis in supercritical fluids . J. Am. Chem. Soc. 117, 3728– 3733 (1995).

    CAS  Article  Google Scholar 

  75. 75

    Barzana, E., Karel, M. & Klibanov, A. M. A colorimetric method for the enzymatic analysis of gases: the determination of ethanol and formaldehyde vapors using solid alcohol oxidase. Anal. Biochem. 182, 109 –115 (1989).

    CAS  Article  Google Scholar 

  76. 76

    Marbrouk, P. A. The use of nonaqueous media to prove biochemically significant enzyme intermediates: the generation and stabilization of horseradish peroxidase compound III in neat benzene solution at room temperature. J. Am. Chem. Soc. 117, 2141–2146 (1995).

    Article  Google Scholar 

  77. 77

    Michels, P. C., Dordick, J. S. & Clark, D. S. Dipole formation and solvent electrostriction in subtilisin catalysis. J. Am. Chem. Soc. 119, 70–76 (1997).

    Article  Google Scholar 

  78. 78

    Barzana, E. Gas phase biosensors. Adv. Biochem. Eng. Biotechnol. 53, 1–15 (1995).

    Article  Google Scholar 

  79. 79

    Gill, I. & Vulfson, E. Enzymic catalysis in heterogeneous eutectic mixtures of substrates. Trends Biotechnol. 12, 118–122 (1994).

    CAS  Article  Google Scholar 

  80. 80

    De Bont, J. A. M. Solvent-tolerant bacteria in biocatalysis. Trends Biotechnol. 16, 493–499 (1998).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Alexander M. Klibanov.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Klibanov, A. Improving enzymes by using them in organic solvents. Nature 409, 241–246 (2001). https://doi.org/10.1038/35051719

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing