Letter | Published:

Many-particle entanglement with Bose–Einstein condensates

Naturevolume 409pages6366 (2001) | Download Citation

Subjects

Abstract

The possibility of creating and manipulating entangled states of systems of many particles is of significant interest for quantum information processing; such a capability could lead to new applications that rely on the basic principles of quantum mechanics1. So far, up to four atoms have been entangled in a controlled way2,3. A crucial requirement for the production of entangled states is that they can be considered pure at the single-particle level. Bose–Einstein condensates4,5,6 fulfil this requirement; hence it is natural to investigate whether they can also be used in some applications of quantum information. Here we propose a method to achieve substantial entanglement of a large number of atoms in a Bose–Einstein condensate. A single resonant laser pulse is applied to all the atoms in the condensate, which is then allowed to evolve freely; in this latter stage, collisional interactions produce entanglement between the atoms. The technique should be realizable with present technology.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Special issue on quantum information. Phys. World 11 (2) 33–57 (1998).

  2. 2

    Sackett, C. A. et al. Experimental entanglement of four particles. Nature 404, 256–259 ( 2000).

  3. 3

    Rauschenbeutel, A. et al. Step-by-step engineered multiparticle entanglement. Science 288, 2024–2028 ( 2000).

  4. 4

    Anderson, M. H., Ensher, J. R., Matthews, M. R., Wieman, C. E. & Cornell, E. A. Observation of Bose–Einstein condensation in a dilute atomic vapor. Science 269, 198–201 (1995).

  5. 5

    Davis, K. B. et al. Bose-Einstein condensation in a gas of sodium atoms. Phys. Rev. Lett. 75, 3969–3973 (1995).

  6. 6

    Parkins, A. S. & Walls, D. F. The physics of trapped dilute-gas Bose-Einstein condensates. Phys. Rep. 303, 1–80 (1998).

  7. 7

    Kitagawa, M. & Ueda, M. Squeezed spin states. Phys. Rev. A 47, 5138–5143 ( 1993).

  8. 8

    Hall, D. S., Matthews, M. R., Ensher, J. R., Wieman, C. E. & Cornell, E. A. Dynamics of component separation in a binary mixture of Bose-Einstein condensates. Phys. Rev. Lett. 81, 1539–1542 ( 1998).

  9. 9

    Stenger, J. et al. Spin domains in ground-state Bose–Einstein condensates. Nature 396, 345–348 (1998).

  10. 10

    Miesner, H.-J. et al. Observation of metastable states in spinor Bose-Einstein condensates. Phys. Rev. Lett. 82, 2228– 2231 (1999).

  11. 11

    Sinatra, A. & Castin, Y. Binary mixtures of Bose-Einstein condensates: Phase dynamics and spatial dynamics. Eur. Phys. J. D 8, 319–332 ( 2000).

  12. 12

    Mølmer, K., Castin, Y. & Dalibard, J. Monte Carlo wave-function method in quantum optics. J. Opt. Soc. Am. B 10, 524– 538 (1993).

  13. 13

    Wineland, D. J., Bollinger, J. J., Itano, W. M. & Heinzen, D. J. Squeezed atomic states and projection noise in spectroscopy. Phys. Rev. A 50, 67–88 ( 1994).

  14. 14

    Boyer, P. & Kasevich, M. A. Heisenberg-limited spectroscopy with degenerate Bose-Einstein gases. Phys. Rev. A 56 , R1083–R1086 (1997).

  15. 15

    Santarelli, G. et al. Quantum projection noise in an atomic fountain: A high stability cesium frequency standard. Phys. Rev. Lett. 82, 4619–4622 (1999).

  16. 16

    Sørensen, A. & Mølmer, K. Spin-spin interaction and spin squeezing in an optical lattice. Phys. Rev. Lett. 83, 2274–2277 ( 1999).

  17. 17

    Hald, J., Sørensen, J. L., Schori, C. & Polzik, E. S. Spin squeezed atoms: A macroscopic entangled ensemble created by light. Phys. Rev. Lett. 83, 1319–1322 (1999).

  18. 18

    Kuzmich, A., Mandel, L. & Bigelow, N. P. Generation of spin squeezing via continuous quantum nondemolition measurement. Phys. Rev. Lett. 85, 1594–1597 (2000).

  19. 19

    Mølmer, K. & Sørensen, A. Multiparticle entanglement of hot trapped ions. Phys. Rev. Lett. 82, 1835–1838 (1999).

  20. 20

    Bollinger, J. J., Itano, W. M., Wineland, D. J. & Heinzen, D. J. Optimal frequency measurements with maximally correlated states. Phys. Rev. A 54, 4649–4652 (1996).

Download references

Acknowledgements

This work was supported by the Austrian Science Foundation, the European Union project EQUIP, the TMR European network, the ESF under the PESC program “Quantum Information”, the Institute for Quantum Information GmbH, and the Thomas B. Thriges Center for Kvanteinformatik. A.S. acknowledges the hospitality of the University of Innsbruck.

Author information

Affiliations

  1. Institute of Physics and Astronomy, University of Aarhus, Århus C, DK-8000, Denmark

    • A. Sørensen
  2. Institute for Theoretical Physics, University of Innsbruck, Innsbruck, A-6020, Austria

    • L.-M. Duan
    • , J. I. Cirac
    •  & P. Zoller

Authors

  1. Search for A. Sørensen in:

  2. Search for L.-M. Duan in:

  3. Search for J. I. Cirac in:

  4. Search for P. Zoller in:

Corresponding author

Correspondence to A. Sørensen.

About this article

Publication history

Received

Accepted

Issue Date

DOI

https://doi.org/10.1038/35051038

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.