Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A massive reservoir of low-excitation molecular gas at high redshift

Abstract

Molecular hydrogen (H2) is an important component of galaxies because it fuels star formation and the accretion of gas onto active galactic nuclei (AGN), the two processes that can generate the large infrared luminosities of gas-rich galaxies1,2. Observations of spectral-line emission from the tracer molecule carbon monoxide (CO) are used to probe the properties of this gas. But the lines that have been studied in the local Universe—mostly the lower rotational transitions of J = 1 → 0 and J = 2 → 1—have hitherto been unobservable in high-redshift galaxies. Instead, higher transitions have been used, although the densities and temperatures required to excite these higher transitions may not be reached by much of the gas. As a result, past observations may have underestimated the total amount of molecular gas by a substantial amount. Here we report the discovery of large amounts of low-excitation molecular gas around the infrared-luminous quasar APM08279+5255 at redshift z = 3.91, using the two lowest excitation lines of 12CO (J = 1 → 0 and J = 2 → 1). The maps confirm the presence of hot and dense gas near the nucleus3, and reveal an extended reservoir of molecular gas with low excitation that is 10 to 100 times more massive than the gas traced by the higher-excitation observations. This raises the possibility that significant amounts of low-excitation molecular gas may exist in the environments of high-redshift (z > 3) galaxies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Molecular gas in and around APM08279+5255, as traced by CO  J = 1→0, and continuum emission from the active nucleus.
Figure 2: Molecular gas in and around APM08279+5255, as traced by CO  J = 2 → 1, overlaid on a greyscale image of 8.45-GHz continuum emission from the active nucleus.

Similar content being viewed by others

References

  1. Telesco, C. M. Enhanced star formation and infrared emission in the centers of galaxies. Annu. Rev. Astron. Astrophys. 26, 343– 376 (1988).

    Article  ADS  CAS  Google Scholar 

  2. Sanders, D. B., Scoville, N. Z. & Soifer, B. T. Molecular gas in luminous infrared galaxies. Astrophys. J. 370, 158–171 (1991).

    Article  ADS  CAS  Google Scholar 

  3. Downes, D., Neri, R., Wiklind, T., Wilner, D. J. & Shaver, P. A. Detection of CO(4–3), CO(9–8), and dust emission in the broad absorption line quasar APM 08279+5255 at a redshift of 3.9. Astrophys. J. 513, L1– L4 (1999).

    Article  ADS  CAS  Google Scholar 

  4. Irwin, M. J., Ibata, R. A., Lewis, G. F. & Totten, E. J. APM 08279+5255: an ultraluminous broad absorption line quasar at a redshift z = 3.87. Astrophys. J. 505, 529– 535 (1998).

    Article  ADS  CAS  Google Scholar 

  5. Lewis, G. F., Chapman, S. C., Ibata, R. A., Irwin, M. J. & Totten, E. J. Submillimeter observations of the ultraluminous broad absorption line quasar APM 08279+5255. Astrophys. J. 505, L1–L5 (1998).

    Article  ADS  Google Scholar 

  6. Ibata, R. A., Lewis, G. F., Irwin, M. J., Lehár, J. & Totten, E. J. NICMOS and VLA observations of the gravitationally lensed ultraluminous BAL quasar APM 08279+5255: detection of a third image. Astron. J. 118, 1922– 1930 (1999).

    Article  ADS  CAS  Google Scholar 

  7. Egami, E. et al. APM 08279+5255: Keck near- and mid-infrared high-resolution imaging. Astrophys. J. 535, 561– 574 (2000).

    Article  ADS  Google Scholar 

  8. Young, J. S. & Scoville, N. Z. Extragalactic CO—gas distributions which follow the light in IC 342 and NGC 6946. Astrophys. J. 258, 467–489 (1982).

    Article  ADS  CAS  Google Scholar 

  9. Young, J. S. & Scoville, N. Z. Molecular gas in galaxies. Annu. Rev. Astron. Astrophys. 29, 581– 625 (1991).

    Article  ADS  CAS  Google Scholar 

  10. Dickman, R. L., Snell, R. L. & Schloerb, F. P. Carbon monoxide as an extragalactic mass tracer. Astrophys. J. 309, 326– 330 (1986).

    Article  ADS  CAS  Google Scholar 

  11. Downes, D. & Solomon, P. M. Rotating nuclear rings and extreme starbursts in ultraluminous galaxies. Astrophys. J. 507, 615–654 (1998).

    Article  ADS  CAS  Google Scholar 

  12. Smail, I., Ivison, R. J. & Blain, A. W. A deep sub-millimeter survey of lensing clusters: a new window on galaxy formation and evolution. Astrophys. J. 490, L5–L8 (1997).

    Article  ADS  Google Scholar 

  13. Ivison, R. J. et al. An excess of submillimeter sources near 4C 41.17: a candidate proto-cluster at z = 3.8? Astrophys. J. 542, 27–34 (2000).

    Article  ADS  Google Scholar 

  14. Papadopoulos, P. P. et al. CO(4–3) and dust emission in two powerful high-z radio galaxies, and CO lines at high redshifts. Astrophys. J. 528, 626–636 (2000).

    Article  ADS  CAS  Google Scholar 

  15. Plume, R. et al. Large-scale 13CO J = 5–4 and [CI] mapping of Orion A. Astrophys. J. 539, L133 –L136 (2000).

    Article  ADS  CAS  Google Scholar 

  16. Aalto, S., Booth, R. S., Black, J. H. & Johansson, L. E. B. Molecular gas in starburst galaxies: line intensities and physical conditions. Astron. Astrophys. 300, 369– 384 (1995).

    ADS  CAS  Google Scholar 

  17. Jackson, J. M., Paglione, T. A. D., Carlstrom, J. E. & Rieu, N. Submillimeter HCN and HCO+ emission from galaxies. Astrophys. J. 438, 695–701 ( 1995).

    Article  ADS  CAS  Google Scholar 

  18. Paglione, T. A. D., Jackson, J. M. & Ishizuki, S. The average properties of the dense molecular gas in galaxies. Astrophys. J. 484, 656– 663 (1997).

    Article  ADS  CAS  Google Scholar 

  19. Papadopoulos, P. P. & Allen, M. L. Gas and dust in NGC 7469: submillimeter imaging and CO J = 3–2. Astrophys. J. 537, 631–637 (2000).

    Article  ADS  CAS  Google Scholar 

  20. Hughes, D. H., Gear, W. K. & Robson, E. I. The submillimetre structure of the starburst nucleus in M82—a diffraction-limited 450-micron map. Mon. Not. R. Astron. Soc. 270, 641–649 (1994).

    Article  ADS  Google Scholar 

  21. Ivison, R. J., Papadopoulos, P. P., Seaquist, E. R. & Eales, S. A. A search for molecular gas in a high-redshift radio galaxy. Mon. Not. R. Astron. Soc. 278, 669–672 (1996).

    ADS  CAS  Google Scholar 

  22. Carilli, C. L. & Holdaway, M. A. Tropospheric phase calibration in millimeter interferometry. Radio Sci. 34, 817–840 (1999).

    Article  ADS  Google Scholar 

  23. Carilli, C. L., Menten, K. M. & Yun, M. S. Detection of CO(2–1) and radio continuum emission from the z = 4.4 QSO BRI 1335–0417. Astrophys. J. 521, L25–L28 (1999).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

P.P. and R.I. would like to thank E. Seaquist for early discussions and encouragement. We also thank R. Barvainis. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rob Ivison.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Papadopoulos, P., Ivison, R., Carilli, C. et al. A massive reservoir of low-excitation molecular gas at high redshift . Nature 409, 58–60 (2001). https://doi.org/10.1038/35051029

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35051029

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing