Article | Published:

A scheme for efficient quantum computation with linear optics

Nature volume 409, pages 4652 (04 January 2001) | Download Citation

Subjects

Abstract

Quantum computers promise to increase greatly the efficiency of solving problems such as factoring large integers, combinatorial optimization and quantum physics simulation. One of the greatest challenges now is to implement the basic quantum-computational elements in a physical system and to demonstrate that they can be reliably and scalably controlled. One of the earliest proposals for quantum computation is based on implementing a quantum bit with two optical modes containing one photon. The proposal is appealing because of the ease with which photon interference can be observed. Until now, it suffered from the requirement for non-linear couplings between optical modes containing few photons. Here we show that efficient quantum computation is possible using only beam splitters, phase shifters, single photon sources and photo-detectors. Our methods exploit feedback from photo-detectors and are robust against errors from photon loss and detector inefficiency. The basic elements are accessible to experimental investigation with current technology.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26, 1484–1509 (1997).

  2. 2.

    Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79, 325–328 (1997).

  3. 3.

    Conjugate coding. (Original Manuscript 1969) Sigact News 15, 78–88 ( 1983).

  4. 4.

    , , , & Experimental quantum cryptography. J. Cryptol. 5, 3– 28 (1992).

  5. 5.

    in Proceedings of the 37th Symposium on the Foundations of Computer Science (FOCS) 56–65 (IEEE Press, Los Alamitos, 1996).

  6. 6.

    & in Proceedings of the 29th Annual ACM Symposium on the Theory of Computation (STOC) 176– 188 (ACM Press, New York, 1996).

  7. 7.

    Quantum computations: algorithms and error correction. Russian Math. Surv. 52, 1191–1249 (1997).

  8. 8.

    , & Resilient quantum computation. Science 279, 342–345 ( 1998).

  9. 9.

    Reliable quantum computers. Proc. R. Soc. Lond. A 454 , 385–410 (1998).

  10. 10.

    Efficient fault-tolerant quantum computing. Nature 399, 124–126 (1999).

  11. 11.

    Experimental proposals for quantum computation. (Special focus issue) Fort. Phys. 48, 767 –1138 (2000).

  12. 12.

    Quantum optical Fredkin gate. Phys. Rev. Lett. 62, 2124–2127 (1988).

  13. 13.

    , & Quantum key distribution over a 48 km optical fibre network. J. Mod. Optics 47, 533– 547 (2000).

  14. 14.

    , , & Long-distance Bell-type tests using energy-time entangled photons. Phys. Rev. A 59, 4150–4163 ( 1999).

  15. 15.

    , & Single photon interference in 10 km long optical fibre interferometer. Electron. Lett. 29, 1291 –1293 (1993).

  16. 16.

    , , , & Measurement of conditional phase shifts for quantum logic. Phys. Rev. Lett. 4710–4713 (1995).

  17. 17.

    , & Optical simulation of quantum logic. Phys. Rev. A 57, R1477–R1480 ( 1998).

  18. 18.

    & Reducing the complexity of linear optics quantum circuits. Phys. Rev. A 61, 052303/1–5 (2000).

  19. 19.

    , , & Grover's search algorithm: An optical approach. J. Mod. Optics 47, 257–266 ( 2000).

  20. 20.

    , & Bell measurements for teleportation. Phys. Rev. A 59, 3295–3300 (1999).

  21. 21.

    & Experimental realization of a localized one-photon state. Phys. Rev. Lett. 56, 58 –60 (1986).

  22. 22.

    , & Quantum computability. SIAM J. Comput. 26, 1524–1540 ( 1997).

  23. 23.

    et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993).

  24. 24.

    & Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations. Nature 402, 390–393 (1999).

  25. 25.

    & Quantum Optics (Springer, Berlin, 1994).

  26. 26.

    in Annual Reviews of Computational Physics VI (ed. Stauffer, D.) (World Scientific, Singapore, 1999).

  27. 27.

    The physical implementation of quantum computation. Fort. Phys. 48, 771–793 ( 2000).

  28. 28.

    , , & Experimental realization of an discrete unitary operator. Phys. Rev. Lett. 73, 58–61 ( 1994).

  29. 29.

    , , , & Observation of three-photon Greenberger-Horne-Zeilinger entanglement. Phys. Rev. Lett. 82, 1345– 1349 (1999).

  30. 30.

    , , & All-fiber three-path Mach-Zehnder interferometer. Opt. Lett. 21, 302–304 (1996).

  31. 31.

    , & Introduction to Algorithms 795 (MIT Press, Cambridge, MA, 1990).

  32. 32.

    Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52, 2493–2496 ( 1995).

  33. 33.

    Multiple particle interference and quantum error correction. Proc. R. Soc. Lond. A 452, 2551–2577 (1996).

  34. 34.

    , , & Quantum error correction and orthogonal geometry. Phys. Rev. A 78, 405–408 (1997).

  35. 35.

    A class of quantum error-correcting codes saturating the quantum hamming bound. Phys. Rev. A 54, 1862– 1868 (1996).

  36. 36.

    A theory of fault-tolerant quantum computation. Phys. Rev. A 57, 127–137 (1998).

  37. 37.

    , & Codes for the quantum erasure channel. Phys. Rev. A 56, 33–38 ( 1997).

  38. 38.

    , & Thresholds for linear optics quantum computation. Preprint quant-ph/0006120 at 〈xxx.lanl.gov〉 (2000 ).

  39. 39.

    , , & Quantum repeaters based on entanglement purification. Phys. Rev. A 59, 169–181 ( 1999).

  40. 40.

    , , & A single-photon turnstile device. Nature 397, 500– 503 (1999).

  41. 41.

    , , , & High frequency acousto-electric single photon source. Phys. Rev. A 62, 011803(R)/1–4 (2000 ).

  42. 42.

    , & Development of a high-quantum-efficiency single-photon counting system. Appl. Phys. Lett. 74, 1063 –1065 (1999).

  43. 43.

    , & Encoding a qubit in an oscillator. Preprint quant-ph/0008040 at 〈xxx.lanl.gov〉 (2000).

  44. 44.

    , , , , & Experimental quantum teleportation. Nature 390, 575– 579 (1997).

  45. 45.

    , , , & Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein-Podolski-Rosen channels. Phys. Rev. Lett. 80, 1121– 1125 (1998).

Download references

Acknowledgements

We thank P. Kwiat and A. White for help and discussions.

Author information

Affiliations

  1. *Los Alamos National Laboratory, MS B265, Los Alamos, New Mexico 87545, USA

    • E. Knill
    •  & R. Laflamme
  2. †Centre for Quantum Computer Technology, University of Queensland, St. Lucia, Australia

    • G. J. Milburn

Authors

  1. Search for E. Knill in:

  2. Search for R. Laflamme in:

  3. Search for G. J. Milburn in:

Corresponding author

Correspondence to E. Knill.

Supplementary information

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/35051009

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.