Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Altruism and social cheating in the social amoeba Dictyostelium discoideum


The social amoeba, Dictyostelium discoideum, is widely used as a simple model organism for multicellular development1,2, but its multicellular fruiting stage is really a society. Most of the time, D. discoideum lives as haploid, free-living, amoeboid cells that divide asexually. When starved, 104–105 of these cells aggregate into a slug. The anterior 20% of the slug altruistically differentiates into a non-viable stalk, supporting the remaining cells, most of which become viable spores3,4,5. If aggregating cells come from multiple clones, there should be selection for clones to exploit other clones by contributing less than their proportional share to the sterile stalk. Here we use microsatellite markers to show that different clones collected from a field population readily mix to form chimaeras. Half of the chimaeric mixtures show a clear cheater and victim. Thus, unlike the clonal and highly cooperative development of most multicellular organisms, the development of D. discoideum is partly competitive, with conflicts of interests among cells. These conflicts complicate the use of D. discoideum as a model for some aspects of development, but they make it highly attractive as a model system for social evolution.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Figure 1: Microsatellite genotypes of slugs from two-clone mixture experiments.
Figure 2: Relative contributions of mixed clones to prespore and prestalk regions of chimaeras.


  1. Maeda, Y., Inouye, K. & Takeuchi, I. (eds) Dictyostelium—A Model System for Cell and Developmental Biology (Universal Academy, Tokyo, 1997).

    Google Scholar 

  2. Gross, J. D. Developmental decisions in Dictyostelium discoideum. Microbiol. Rev. 58, 330–351 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Bonner, J. T. The Cellular Slime Molds (Princeton Univ. Press, Princeton, 1967).

    Google Scholar 

  4. Raper, K. B. The Dictyostelids (Princeton Univ. Press, Princeton, 1984).

    Book  Google Scholar 

  5. Raper, K. B. Pseudoplasmodium formation and organization in Dictyostelium discoideum. Journal of the Elisha Mitchell Scientific Society 56, 241–282 (1940).

    Google Scholar 

  6. Williams, G. C. Adaptation and Natural Selection: A Critique of Some Current Evolutionary Thought (Princeton Univ. Press, Princeton, 1966).

    Google Scholar 

  7. Gadagkar, R. & Bonner, J. T. Social insects and social amoebae. J. Biosci. 19, 219–245 (1994).

    Article  Google Scholar 

  8. Armstrong, D. P. Why don’t cellular slime molds cheat. J. Theor. Biol. 109, 271–283 (1984).

    Article  Google Scholar 

  9. Buss, L. W. Somatic cell parasitism and the evolution of somatic tissue compatibility. Proc. Natl Acad. Sci. USA 79, 5337–5341 (1982).

    Article  ADS  CAS  Google Scholar 

  10. Hilson, J. A., Kolmes, S. A. & Nellis, L. F. Fruiting body architecture, spore capsule contents, selfishness, and heterocytosis in the cellular slime mold, Dictyostelium discoideum. Ethol. Ecol. Evol. 6, 529–535 (1994).

    Article  Google Scholar 

  11. Wilson, D. S. & Sober, E. Reviving the superorganism. J. Theor. Biol. 136, 337–356 (1989).

    Article  CAS  Google Scholar 

  12. Kessin, R. H. in Dictyostelium—A Model System for Cell and Developmental Biology (eds Maeda, Y., Inouye, K. & Takeuchi, I.) 3–13 (Universal Academy, Tokyo, 1997).

    Google Scholar 

  13. Atzmony, D., Zahavi, A. & Nanjundiah, V. Altruistic behaviour in Dictyostelium discoideum explained on the basis of individual selection. Curr. Sci. 72, 142–145 (1997).

    Google Scholar 

  14. Huss, M. J. Dispersal of cellular slime moulds by two soil invertebrates. Mycologia 81, 677–682 (1989).

    Article  Google Scholar 

  15. Hamilton, W. D. The genetical evolution of social behaviour. I, II. J. Theor. Biol. 7, 1–52 (1964).

    Article  CAS  Google Scholar 

  16. Francis, D. & Eisenberg, R. Genetic structure of a natural population of Dictyostelium discoideum, a cellular slime mold. Mol. Ecol. 2, 385–391 (1993).

    Article  CAS  Google Scholar 

  17. Ketcham, R. B. & Eisenberg, R. M. Clonal diversity in populations of Polysphondylium pallidum, a cellular slime mold. Ecology 70, 1425–1433 (1989).

    Article  Google Scholar 

  18. Grosberg, R. K. The evolution of allorecognition specificity in clonal invertebrates. Q. Rev. Biol. 63, 377–412 (1988).

    Article  Google Scholar 

  19. Filosa, M. F. Heterocytosis in cellular slime molds. Am. Nat. 96, 79–91 (1962).

    Article  Google Scholar 

  20. Houle, J., Balthazar, J. & West, C. M. A glycosylation mutation affects cell fate in chimeras of Dictyostelium discoideum. Proc. Natl. Acad. Sci. USA 86, 3679–3683 (1989).

    Article  ADS  CAS  Google Scholar 

  21. Ennis, H. L., Dao, D. N., Pukatzki, S. U. & Kessin, R. H. Dictyostelium amoebae lacking an F-box protein form spores rather than stalk in chimeras with wild type. Proc. Natl Acad. Sci. USA 97, 3292–3297 (2000).

    Article  ADS  CAS  Google Scholar 

  22. Velicer, G. J., Kroos, L. & Lenski, R. E. Developmental cheating in the social bacterium Myxococcus xanthus. Nature 404, 598–601 (2000).

    Article  ADS  CAS  Google Scholar 

  23. Stoner, D. S., Rinkevich, B. & Weissman, I. L. Heritable germ and somatic cell lineage competitions in chimeric colonial protochordates. Proc. Natl Acad. Sci. USA 96, 9148–9153 (1999).

    Article  ADS  CAS  Google Scholar 

  24. Grosberg, R. K. & Quinn, J. F. The genetic control and consequences of kin recognition by the larvae of a colonial marine invertebrate. Nature 322, 456–459 (1986).

    Article  ADS  Google Scholar 

  25. Dawkins, R. & Krebs, J. R. in Behavioural Ecology: An Evolutionary Approach 2nd edn (eds Krebs, J. R. & Davies, N. B.) 282–309 (Blackwell, Oxford, 1978).

    Google Scholar 

  26. Elgar, M. A. & Nash, D. R. Sexual cannibalism in the garden spider Araneus diadematus. Anim. Behav. 36, 1511–1517 (1988).

    Article  Google Scholar 

  27. Queller, D. C. & Strassmann, J. E. Kin selection and social insects. Bioscience 48, 165–175 (1998).

    Article  Google Scholar 

  28. Loomis, W. F. Four Billion Years; An Essay on the Evolution of Genes and Organisms (Sinauer, Sunderland, Massachusetts, 1988).

    Google Scholar 

  29. Kay, R. R. & Williams, J. G. The Dictyostelium genome project—an invitation to species hopping. Trends Genet. 15, 294–297 (1999).

    Article  CAS  Google Scholar 

  30. Holm, S. A simple sequentially rejective multiple test procedure. Scand. J. Statist. 6, 65–70 (1979).

    MathSciNet  MATH  Google Scholar 

Download references


We thank R. Gomer for advice and training; D. Welker for supplying the clones; J. Keay, W. Castle, S. Reddy and J. Damon for assistance with laboratory work; and D. Rozen, R. Kessin, G. Velicer and J. Bonner for comments on the manuscript. This work was supported in part by the US National Science Foundation.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Joan E. Strassmann.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Strassmann, J., Zhu, Y. & Queller, D. Altruism and social cheating in the social amoeba Dictyostelium discoideum. Nature 408, 965–967 (2000).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing