Expressing what's on your mind: DNA arrays and the brain

Article metrics

Abstract

Questions about brain function and disease are being addressed with parallel genomic approaches. High-density DNA arrays make it possible to monitor the expression levels of thousands of genes at a time, and are being used to address old questions in new ways and to generate new hypotheses about the workings of the brain.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Gene expression differences between mouse brain regions.
Figure 2: Experimental design and reproducibility.
Figure 3: Of mouse and man.

References

  1. 1

    Fodor, S. P. et al. Multiplexed biochemical assays with biological chips. Nature 364, 555–556 (1993).

  2. 2

    Southern, E. M. et al. Arrays of complementary oligonucleotides for analysing the hybridisation behaviour of nucleic acids. Nucleic Acids Res. 22, 1368–1373 (1994).

  3. 3

    Schena, M., Shalon, D., Davis, R. W. & Brown, P. O. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270, 467–470 (1995).

  4. 4

    Lockhart, D. J. et al. Expression monitoring by hybridization to high-density oligonucleotide arrays. Nature Biotechnol. 14, 1675–1680 (1996).

  5. 5

    Lockhart, D. J. & Winzeler, E. A. Genomics, gene expression and DNA arrays. Nature 405, 827–836 (2000).

  6. 6

    Supplement. The Chipping Forecast. Nature Genet. 21, S3–S50 (1999).

  7. 7

    Kwoh, D. Y. et al. Transcription-based amplification system and detection of amplified human immunodeficiency virus type 1 with a bead-based sandwich hybridization format. Proc. Natl Acad. Sci. USA 86, 1173–1177 (1989).

  8. 8

    Guatelli, J. C. et al. Isothermal, in vitro amplification of nucleic acids by a multienzyme reaction modeled after retroviral replication. Proc. Natl Acad. Sci. USA 87, 7797 (1990).

  9. 9

    Van Gelder, R. N. et al. Amplified RNA synthesized from limited quantities of heterogeneous cDNA. Proc. Natl Acad. Sci. USA 87, 1663–1667 (1990).

  10. 10

    Eberwine, J. et al. Analysis of gene expression in single live neurons. Proc. Natl Acad. Sci. USA 89, 3010–3014 (1992).

  11. 11

    Fodor, S. P. A. et al. Light-directed, spatially addressable parallel chemical synthesis. Science 251, 767–773 (1991).

  12. 12

    Lipshutz, R. J., Fodor, S. P., Gingeras, T. R. & Lockhart, D. J. High density synthetic oligonucleotide arrays. Nature Genet. 21, 20–24 (1999).

  13. 13

    Velculescu, V. E., Zhang, L., Vogelstein, B. & Kinzler, K. W. Serial analysis of gene expression. Science 270, 484–487 (1995).

  14. 14

    Sutcliffe, J. G. et al. TOGA: an automated parsing technology for analyzing expression of nearly all genes. Proc. Natl Acad. Sci. USA 97, 1976–1981 (2000).

  15. 15

    Lee, C. K., Weindruch, R. & Prolla, T. A. Gene-expression profile of the ageing brain in mice. Nature Genet. 25, 294–297 (2000).

  16. 16

    Ginsberg, S. D., Hemby, S. E., Lee, V. M., Eberwine, J. H. & Trojanowski, J. Q. Expression profile of transcripts in Alzheimer's disease tangle-bearing CA1 neurons. Ann. Neurol. 48, 77–87 (2000).

  17. 17

    Mirnics, K., Middleton, A. M., Lewis, D. A. & Levitt, P. Molecular characterization of schizophrenia viewed by microarray analysis of gene expression in prefrontal cortex. Neuron 28, 53–67 (2000).

  18. 18

    Thibault, C. et al. Expresssion profiling of neural cells reveals specific patterns of ethanol-responsive gene expression. Mol. Pharmacol. 52, 1593–1600 (2000).

  19. 19

    Sandberg, R. et al. From the cover: regional and strain-specific gene expression mapping in the adult mouse brain. Proc. Natl Acad. Sci. USA 97, 11038–11043 (2000).

  20. 20

    Crawley, J. N. et al. Behavioral phenotypes of inbred mouse strains: implications and recommendations for molecular studies. Psychopharmacology (Berl.) 132, 107–124 (1997).

  21. 21

    Risch, N. J. Searching for genetic determinants in the new millennium. Nature 405, 847–856 (2000).

  22. 22

    Geschwind, D. H. Mice, microarrays, and the genetic diversity of the brain. Proc. Natl Acad. Sci. USA 97, 10676–10678 (2000).

  23. 23

    Emmert-Buck, M. R. et al. Laser capture microdissection. Science 274, 998–1001 (1996).

  24. 24

    Luo, L. et al. Gene expression profiles of laser-captured adjacent neuronal subtypes. Nature Med. 5, 117–122 (1999).

  25. 25

    Wang, E., Miller, L. D., Ohnmacht, G. A., Liu, E. T. & Marincola, F. M. High-fidelity mRNA amplification for gene profiling. Nature Biotechnol. 18, 457–459 (2000).

  26. 26

    Zarrinkar, P. et al. Arrays of arrays for high throughput gene expression monitoring. Nature Biotechnol. (submitted).

  27. 27

    Bhalla, U. S. & Iyengar, R. Emergent properties of networks of biological signaling pathways. Science 283, 381–387 (1999).

  28. 28

    Weng, G., Bhalla, U. S. & Iyengar, R. Complexity in biological signaling systems. Science 284, 92–96 (1999).

  29. 29

    Cho, R. J. & Campbell, M. J. Transcription, genomes, function. Trends Genet. 16, 409–415 (2000).

  30. 30

    Brown, P. O. & Botstein, D. Exploring the new world of the genome with DNA microarrays. Nature Genet. 21, 33–37 (1999).

  31. 31

    Brent, R. Genomic biology. Cell 100, 169–183 (2000).

Download references

Acknowledgements

We would like to thank Jo A. Del Rio, Todd A. Carter, Cindy Doane, Rickard Sandberg, Dan Pankratz, Edward Callaway and members of the Barlow laboratory for their patience and help and Robert Vigorito of the Baltimore Maryland Brain Bank for assistance in sample acquisition.

Author information

Related links

Related links

FURTHER INFORMATION

Barlow lab web site

Gene expression data from the authors

Cancer Genome Anatomy Project

Rights and permissions

Reprints and Permissions

About this article

Further reading