Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Evidence for decoupling of atmospheric CO2 and global climate during the Phanerozoic eon

Abstract

Atmospheric carbon dioxide concentrations are believed to drive climate changes from glacial to interglacial modes1, although geological1,2,3 and astronomical4,5,6 mechanisms have been invoked as ultimate causes. Additionally, it is unclear7,8 whether the changes between cold and warm modes should be regarded as a global phenomenon, affecting tropical and high-latitude temperatures alike9,10,11,12,13, or if they are better described as an expansion and contraction of the latitudinal climate zones, keeping equatorial temperatures approximately constant14,15,16. Here we present a reconstruction of tropical sea surface temperatures throughout the Phanerozoic eon (the past 550 Myr) from our database17 of oxygen isotopes in calcite and aragonite shells. The data indicate large oscillations of tropical sea surface temperatures in phase with the cold–warm cycles, thus favouring the idea of climate variability as a global phenomenon. But our data conflict with a temperature reconstruction using an energy balance model that is forced by reconstructed atmospheric carbon dioxide concentrations18. The results can be reconciled if atmospheric carbon dioxide concentrations were not the principal driver of climate variability on geological timescales for at least one-third of the Phanerozoic eon, or if the reconstructed carbon dioxide concentrations are not reliable.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Detrended running means of δ18O values of calcitic shells for the Phanerozoic.
Figure 2: Periodogram of the Fourier series decomposition of the detrended δ18O signal and of palaeolatitudes of ice-rafted debris (PIRD).
Figure 3: Tropical surface palaeotemperature anomalies calculated by the energy-balance climate model, and sea surface temperatures (SSTs) inferred from the δ18O data.

References

  1. Frakes, L. A., Francis, J. E. & Syktus, J. I. Climate Modes of the Phanerozoic (Cambridge Univ. Press, Cambridge, 1992).

    Book  Google Scholar 

  2. Fischer, A. G. in Climate in Earth History (eds Berger, W. H. & Crowell, J. C.) 97–104 (Natl Acad. Sci., Washington DC, 1982).

    Google Scholar 

  3. Worsley, T. R., Nance, R. D. & Moody, J. B. Tectonic cycles and the history of the Earth's biogeochemical and paleoceanographic record. Paleoceanography 1, 233–263 (1986).

    ADS  Article  Google Scholar 

  4. Steiner, J. & Grillmair, E. Possible galactic causes for periodic and episodic glaciations. Geol. Soc. Am Bull. 84, 1003–1018 (1973).

    ADS  Article  Google Scholar 

  5. Williams, G. E. Possible relation between periodic glaciation and the flexure of the galaxy. Earth Planet. Sci. Lett. 26, 361–369 (1975).

    ADS  Article  Google Scholar 

  6. Hays, J. D., Imbrie, J. & Shackleton, N. J. Variations in the Earth's orbit: pacemaker of the ice ages. Science 194, 1121–1132 (1976).

    ADS  CAS  Article  Google Scholar 

  7. Crowley, T. J. Pleistocene temperature changes. Nature 371, 664 (1994).

    ADS  Article  Google Scholar 

  8. Broecker, W. S. Glacial climate in the tropics. Science 272, 1902–1904 (1996).

    ADS  CAS  Article  Google Scholar 

  9. Guilderson, T. P., Fairbanks, R. G. & Rubenstone, J. L. Tropical temperature variations since 20,000 years ago: modulating interhemispheric climate change. Science 263, 663–665 (1994).

    ADS  CAS  Article  Google Scholar 

  10. Stute, M. et al. Cooling of tropical Brazil (5°C) during the last glacial maximum. Science 269, 379–383 (1995).

    ADS  CAS  Article  Google Scholar 

  11. Rind, D. & Peteet, D. Terrestrial conditions at the last glacial maximum and CLIMAP sea-surface temperature estimates: are they consistent? Quat. Res. 24, 1–22 (1985).

    Article  Google Scholar 

  12. Thompson, L. G. et al. Late glacial stage and Holocene tropical ice core records from Huascarán, Peru. Science 269, 46–50 (1995).

    ADS  CAS  Article  Google Scholar 

  13. Beck, J. W., Récy, J., Taylor, F., Edwards, R. L. & Gabioch, G. Abrupt changes in early Holocene tropical sea surface temperature derived from coral records. Nature 385, 705–707 (1997).

    ADS  CAS  Article  Google Scholar 

  14. CLIMAP Project Members Map and Chart Series MC-36 (Geological Society of America, Boulder, Colorado, 1981).

    Google Scholar 

  15. Bush, A. B. G. & Philander, S. G. H. The role of ocean-atmosphere interactions in tropical cooling during the Last Glacial Maximum. Science 279, 1341–1344 (1998).

    ADS  CAS  Article  Google Scholar 

  16. Crowley, T. J. Climate SSTs re-visited. Clim. Dyn. 16, 241–255 (2000).

    Article  Google Scholar 

  17. Veizer, J. et al. 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater. Chem. Geol. 161, 59–88 (1999).

    ADS  CAS  Article  Google Scholar 

  18. François, L. M. & Walker, J. C. G. Modelling the Phanerozoic carbon cycle and climate: constraints from the 87Sr/86Sr isotopic ratio of seawater. Am. J. Sci. 292, 81–135 (1992).

    ADS  Article  Google Scholar 

  19. Berner, R. A. GEOCARB II: a revised model for atmospheric CO2 over Phanerozoic time. Am. J. Sci. 294, 56–91 (1994).

    ADS  CAS  Article  Google Scholar 

  20. Berner, R. A. The carbon cycle and CO2 over Phanerozoic time: the role of land plants. Phil. Trans. R. Soc. Lond. B. 353, 75–82 (1998).

    Article  Google Scholar 

  21. Gibbs, M. T., Bice K. L., Barron, E. J. & Kump, L. R. in Warm Climates in Earth History (eds Huber, B. T., MacLeod, K. G. & Scott, L. W. ) 386–422 (Cambridge Univ. Press, Cambridge, 2000).

    Google Scholar 

  22. Frakes, L. A. & Francis, J. E. A guide to Phanerozoic cold polar climates from high-latitude ice-rafting in the Cretaceous. Nature 333, 547–549 (1988).

    ADS  Article  Google Scholar 

  23. Harland, W. B. et al. A Geologic Timescale (Cambridge Univ. Press, Cambridge, 1990).

    Google Scholar 

  24. Savin, S. M. The history of the earth's surface temperature during the past 100 million years. Annu. Rev. Earth Planet. Sci. 5, 319–355 (1977).

    ADS  CAS  Article  Google Scholar 

  25. Endal, A. S. & Sofia, S. Rotation in solar-type stars, I, Evolutionary models for the spin-down of the sun. Astrophys. J. 243, 625–640 (1981).

    ADS  CAS  Article  Google Scholar 

  26. Houghton, J. T., Meira Filho, L. G., Callander, B. A., Kattenberg, A. & Maskell, K. (eds) Climate Change 1995: The Science of Climate Change (Cambridge Univ. Press, Cambridge, 1996).

    Google Scholar 

  27. Degens, E. T. & Epstein, S. Relationship between 18O/16O ratios in coexisting carbonates, cherts and dolomites. Am. Ass. Petrol. Geol. Bull. 46, 534–542 (1962).

    CAS  Google Scholar 

  28. Railsback, LB. Influence of changing deep ocean circulation on the Phanerozoic oxygen isotopic record. Geochim. Cosmochim. Acta 54, 1501–1509 (1990).

    ADS  CAS  Article  Google Scholar 

  29. Knauth, L. P. & Epstein, S. Hydrogen and oxygen isotope ratios in nodular and bedded cherts. Geochim. Cosmochim. Acta 40, 1095–1108 (1976).

    ADS  CAS  Article  Google Scholar 

  30. Hays, P. D. & Grossman, E. L. Oxygen isotopes of meteoric calcite cements as indicators of continental paleoclimate. Geology 19, 441–444 (1991).

    ADS  CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Deutsche Forschungsgemeinschaft (Leibniz Prize and research grants to J.V.) and by the Natural Sciences and Engineering Research Council of Canada. International cooperation was facilitated by the Canadian Institute for Advanced Research (Toronto), with support from NORANDA and Hatch Investments Ltd. Y.G. and L.M.F. were supported by the Belgian National Foundation for Scientific Research (FNRS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ján Veizer.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Veizer, J., Godderis, Y. & François, L. Evidence for decoupling of atmospheric CO2 and global climate during the Phanerozoic eon. Nature 408, 698–701 (2000). https://doi.org/10.1038/35047044

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35047044

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing