Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Integration of target and body-part information in the premotor cortex when planning action

Abstract

To plan an action, we must first select an object to act on and the body part (or parts) to use to accomplish our intention. To plan the motor task of reaching, we specify both the target to reach for and the arm to use. In the process of planning and preparing a motor task, information about the motor target and the arm to use must be integrated before a motor program can be formulated to generate the appropriate limb movement. One of the structures in the brain that is probably involved in integrating these two sets of information is the premotor area in the cerebral cortex of primates1,2,3,4,5. The lateral sector of the dorsal premotor cortex is known to receive both visual and somatosensory input6,7,8, and we show here that neurons in this area gather information about both the target and the body part, while subsequent activity specifies the planned action.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Experimental design.
Figure 2: Two examples of neuronal activity in the PMd.
Figure 3: Action-selective activity.
Figure 4: An example of neuronal activity exhibiting selectivity for a first cue instruction and also for a planned action.

References

  1. Dum, R. P. & Strick, P. L. in Motor Control: Concepts and Issues (eds Humphrey, D. R. & Freund, H.-J.) 383– 397 (Wiley & Sons, New York, 1991).

    Google Scholar 

  2. Wise, S. P. The primate premotor cortex: past, present, and preparatory. Annu. Rev. Neurosci. 8, 1–19 ( 1985).

    Article  ADS  CAS  Google Scholar 

  3. Passingham, R. E. The Frontal Lobes and Voluntary Action (Oxford Univ. Press, Oxford, 1993).

    Google Scholar 

  4. Kurata, K. Information processing for motor control in primate premotor cortex. Behav. Brain Res. 61, 135–142 (1994).

    Article  CAS  Google Scholar 

  5. Rizzolatti, G., Luppino, G. & Matelli, M. The organization of the cortical motor system: new concepts. Electroencephalogr. Clin. Neurophysiol. 106, 283–296 (1998).

    Article  CAS  Google Scholar 

  6. Caminiti, R., Ferraina, S. & Johnson, P. B. The sources of visual information to the primate frontal lobe: a novel role for the superior parietal lobule. Cereb. Cortex 6, 319–328 ( 1996).

    Article  CAS  Google Scholar 

  7. Matelli, M., Govoni, P., Galletti, C., Kutz, D. F. & Luppino, G. Superior area 6 afferents from the superior parietal lobule in the macaque monkey. J. Comp. Neurol. 402, 327–352 (1998).

    Article  CAS  Google Scholar 

  8. Fogassi, L. et al. Visual responses in the dorsal premotor area F2 of the macaque monkey. Exp. Brain Res. 128, 194– 199 (1999).

    Article  CAS  Google Scholar 

  9. Kurata, K., Okano, K. & Tanji, J. Distribution of neurons related to a hindlimb as opposed to forelimb movement in the monkey premotor cortex. Exp. Brain Res. 60, 188–191 ( 1985).

    Article  CAS  Google Scholar 

  10. Halsband, U. & Passingham, R. E. The role of premotor and parietal cortex in the direction of action. Brain Res. 240, 368–372 (1982).

    Article  CAS  Google Scholar 

  11. Passingham, R. E. Premotor cortex and preparation for movement. Exp. Brain Res. 70, 590–596 (1988).

    Article  CAS  Google Scholar 

  12. Petrides, M. Deficits in non-spatial conditional associative learning after periarcuate lesions in the monkey. Behav. Brain Res. 16, 95–101 (1985).

    Article  CAS  Google Scholar 

  13. Kurata, K. & Wise, S. P. Premotor cortex of rhesus monkeys: set-related activity during two conditional motor tasks. Exp. Brain Res. 69, 327–343 ( 1988).

    Article  CAS  Google Scholar 

  14. Mushiake, H., Inase, M. & Tanji, J. Neuronal activity in the primate premotor, supplementary, and precentral motor cortex during visually guided and internally determined sequential movements. J. Neurophysiol. 66, 705–718 (1991).

    Article  CAS  Google Scholar 

  15. Boussaoud, D. & Wise, S. P. Primate frontal cortex: neuronal activity following attentional versus intentional cues. Exp. Brain Res. 95, 15–27 ( 1993).

    Article  CAS  Google Scholar 

  16. di Pellegrino, G. & Wise, S. P. Visuospatial versus visuomotor activity in the premotor and prefrontal cortex of a primate. J. Neurosci. 13, 1227–1243 (1993).

    Article  CAS  Google Scholar 

  17. Shen, L. & Alexander, G. E. Preferential representation of instructed target location versus limb trajectory in dorsal premotor area. J. Neurophysiol. 77, 1195– 1212 (1997).

    Article  CAS  Google Scholar 

  18. Riehle, A. & Requin, J. Monkey primary motor and premotor cortex: single-cell activity related to prior information about direction and extent of an intended movement. J. Neurophysiol. 61, 534–549 (1989).

    Article  CAS  Google Scholar 

  19. Kurata, K. Premotor cortex of monkeys: set- and movement-related activity reflecting amplitude and direction of wrist movements. J. Neurophysiol. 69, 187–200 (1993).

    Article  CAS  Google Scholar 

  20. Wise, S. P., Boussaoud, D., Johnson, P. B. & Caminiti, R. Premotor and parietal cortex: corticocortical connectivity and combinatorial computations. Annu. Rev. Neurosci. 20, 25 –42 (1997).

    Article  CAS  Google Scholar 

  21. Johnson, P. B., Ferraina, S., Bianchi, L. & Caminiti, R. Cortical networks for visual reaching: physiological and anatomical organization of frontal and parietal lobe arm regions. Cereb. Cortex 6, 102–119 (1996).

    Article  CAS  Google Scholar 

  22. Hoshi, E., Shima, K. & Tanji, J. Neuronal activity in the primate prefrontal cortex in the process of motor selection based on two behavioral rules. J. Neurophysiol. 83, 2355–2373 (2000).

    Article  CAS  Google Scholar 

  23. Tokuno, H., Hatanaka, N., Takada, M. & Nambu, A. B-mode and color Doppler ultrasound imaging for localization of microelectrode in monkey brain. Neurosci. Res. 36, 335– 338 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Kurama, Y. Takahashi and S. Hoffman for technical assistance. This work was supported by the Japan Society for the Promotion of Science (E.H.), by the Ministry of Education, Science, and Culture of Japan, and by the Japan Science and Technology Corporation (J.T.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Tanji.

Supplementary information

41586_2000_BF35044075_MOESM1_ESM.pdf

Supplementary figure: Eye position traces during task performance. Additional information for the neuronal activity are shown in figure 4 in the main text. The vertical (V) and horizontal (H) eye positions are shown below each raster display. Scale bar, 1 second.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hoshi, E., Tanji, J. Integration of target and body-part information in the premotor cortex when planning action. Nature 408, 466–470 (2000). https://doi.org/10.1038/35044075

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35044075

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing