Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Evolution of the Sun's large-scale magnetic field since the Maunder minimum


The most striking feature of the Sun's magnetic field is its cyclic behaviour. The number of sunspots, which are dark regions of strong magnetic field on the Sun's surface, varies with a period of about 11 years. Superposed on this cycle are secular changes that occur on timescales of centuries and events like the Maunder minimum in the second half of the seventeenth century, when there were very few sunspots1,2. A part of the Sun's magnetic field reaches out from the surface into interplanetary space, and it was recently discovered3 that the average strength of this interplanetary field has doubled in the past 100 years. There has hitherto been no clear explanation for this doubling. Here we present a model describing the long-term evolution of the Sun's large-scale magnetic field, which reproduces the doubling of the interplanetary field. The model indicates that there is a direct connection between the length of the sunspot cycle and the secular variations.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Distribution of the magnetic field and brightness on the solar surface.
Figure 2: Evolution of the open magnetic flux at the solar surface since the end of the Maunder minimum in 1700.


  1. Ribes, J. C. & Nesme-Ribes, E. The solar sunspot cycle in the Maunder minimum AD1645 to AD1715. Astron. Astrophys. 276, 549–563 (1993).

    ADS  Google Scholar 

  2. Beer, J., Blinov, A., Bonani, G., Hofmann, H. J. & Finkel, R. C. Use of 10Be in polar ice to trace the 11-year cycle of solar activity. Nature 347, 164–166 (1990).

    ADS  CAS  Article  Google Scholar 

  3. Lockwood, M., Stamper, R. & Wild, M. N. A doubling of the Sun's coronal magnetic field during the past 100 years. Nature 399, 437– 439 (1999).

    ADS  CAS  Article  Google Scholar 

  4. Harvey, K. L. & Zwaan, C. Properties and emergence of bipolar active regions. Sol. Phys. 148, 85– 118 (1993).

    ADS  Article  Google Scholar 

  5. Sheeley, N. R. in The Solar Cycle (ed. Harvey, K. L.) 1–13 (Astronomical Society of the Pacific, ASP Conf. Series Vol. 27, San Francisco, 1992).

    Google Scholar 

  6. Wang, Y. M. & Sheeley, N. R. The rotation of photospheric magnetic fields: A random walk transport model. Astrophys. J. 430, 399–412 (1994).

    ADS  Article  Google Scholar 

  7. Wang, Y.-M., Lean, J. & Sheeley, N. R. The long-term variation of the Sun's open magnetic flux. Geophys. Res. Lett. 27, 505– 508 (2000).

    ADS  Article  Google Scholar 

  8. Wang, Y.-M., Sheeley, N. R. & Lean, J. Understanding the evolution of the Sun's open magnetic flux. Geophys. Res. Lett. 27, 621– 624 (2000).

    ADS  CAS  Article  Google Scholar 

  9. Schrijver, C. J. et al. Large-scale coronal heating by the small-scale magnetic field of the Sun. Nature 394, 152– 154 (1998).

    ADS  CAS  Article  Google Scholar 

  10. Howard, R. & Labonte, B. J. Surface magnetic fields during the solar activity cycle. Sol. Phys. 74, 131–145 (1981).

    ADS  Article  Google Scholar 

  11. Harvey, K. L. in Solar Surface Magnetism (eds Rutten, R. J. & Schrijver, C. J.) 347–363 (Kluwer, Dordrecht, 1994).

    Book  Google Scholar 

  12. Livingston, W. C., Harvey, J., Slaughter, C. & Trumbo, D. Solar magnetograph employing integrated diode arrays. Appl. Opt. 15, 40–52 ( 1976).

    ADS  CAS  Article  Google Scholar 

  13. Schrijver, C. J. & Harvey, K. L. The photospheric magnetic flux budget. Sol. Phys. 150, 1– 18 (1994).

    ADS  Article  Google Scholar 

  14. Chapman, G. A., Cookson, A. M. & Dobias, J. J. Solar variability and the relation of facular to sunspot areas during solar cycle 22. Astrophys. J. 482, 541–545 (1997).

    ADS  Article  Google Scholar 

  15. Fligge, M., Solanki, S. K., Unruh, Y. C., Fröhlich, C. & Wehrli, C. A model of solar total and spectral irradiance variations. Astron. Astrophys. 355, 709–718 (1998).

    ADS  Google Scholar 

  16. Dicke, R. H. Solar luminosity and the sunspot cycle. Nature 280, 24–27 (1979).

    ADS  Article  Google Scholar 

  17. Hoyng, P. Is the solar cycle timed by a clock? Sol. Phys. 169 , 253–264 (1996).

    ADS  Article  Google Scholar 

  18. Wang, Y. M. & Sheeley, N. R. Solar implications of ULYSSES interplanetary field measurements. Astrophys. J. 447 , L143–L146 (1995).

    ADS  Google Scholar 

  19. Wilson, P. R., Altrock, R. C., Harvey, K. L., Martin, S. F. & Snodgrass, H. B. The extended solar activity cycle. Nature 333, 748– 750 (1988).

    ADS  Article  Google Scholar 

  20. Harvey, K. L. in The Solar Cycle (ed. Harvey, K. L.) 335–367 (Astronomical Society of the Pacific, ASP Conf. Series Vol. 27, San Francisco, 1992).

    Google Scholar 

  21. Friis-Christensen, E. & Lassen, K. Length of the solar cycle: An indicator of solar activity closely associated with climate. Science 254, 698–700 ( 1991).

    ADS  CAS  Article  Google Scholar 

  22. Svensmark, H. & Friis-Christensen, E. Variation of cosmic ray flux and global cloud coverage—a missing link in solar-climate relationships. J. Atmos. Terr. Phys. 59, 1225– 1232 (1997).

    ADS  CAS  Article  Google Scholar 

  23. Svensmark, H. Influence of cosmic rays on Earth's climate. Phys. Rev. Lett. 81, 5027–5030 (1998).

    ADS  CAS  Article  Google Scholar 

  24. Scherrer, P. H. et al. The Solar Oscillations Investigation—Michelson Doppler Imager. Sol. Phys. 162, 129– 188 (1995).

    ADS  Article  Google Scholar 

Download references


J. Beer and M. Lockwood provided the 10Be record and the record of the reconstructed interplanetary magnetic field, respectively. We are grateful to K. Schrijver for comments on this paper.

Author information

Authors and Affiliations


Corresponding author

Correspondence to S. K. Solanki.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Solanki, S., Schüssler, M. & Fligge, M. Evolution of the Sun's large-scale magnetic field since the Maunder minimum . Nature 408, 445–447 (2000).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing