Imagery neurons in the human brain


Vivid visual images can be voluntarily generated in our minds in the absence of simultaneous visual input. While trying to count the number of flowers in Van Gogh's Sunflowers, understanding a description or recalling a path, subjects report forming an image in their “mind's eye”1. Whether this process is accomplished by the same neuronal mechanisms as visual perception has long been a matter of debate1,2,3. Evidence from functional imaging1,4,5,6,7,8, psychophysics1,9, neurological studies2 and monkey electrophysiology10,11,12 suggests a common process, yet there are patients with deficits in one but not the other3,13. Here we directly investigated the neuronal substrates of visual recall by recording from single neurons in the human medial temporal lobe14,15 while the subjects were asked to imagine previously viewed images. We found single neurons in the hippocampus, amygdala, entorhinal cortex and parahippocampal gyrus that selectively altered their firing rates depending on the stimulus the subjects were imagining. Of the neurons that fired selectively during both vision and imagery, the majority (88%) had identical selectivity. Our study reveals single neuron correlates of volitional visual imagery in humans and suggests a common substrate for the processing of incoming visual information and visual recall.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Individual responses of a single neuron during vision and imagery.
Figure 2: Responses of the same neuron as in Fig. 1 during vision and visual imagery.
Figure 3: Responses of a selective neuron in the left amygdala of a different subject during vision and visual imagery.
Figure 4: Comparison of firing rates and Pe between vision and imagery.


  1. 1

    Kosslyn, S. M. Image and Brain (MIT Press, Cambridge, 1994).

    Google Scholar 

  2. 2

    Farah, M. J. Is visual imagery really visual? Overlooked evidence from neuropsychology. Psychol. Rev. 95, 307–317 (1988).

    CAS  Article  Google Scholar 

  3. 3

    Behrmann, M., Winocur, G. & Moscovitch, M. Dissociation between mental imagery and object recognition in a brain-damaged patient. Nature 359, 636–637 (1992).

    ADS  CAS  Article  Google Scholar 

  4. 4

    Kosslyn, S. M., Thompson, W. L. & Alpert, N. M. Neural systems shared by visual imagery and visual perception: a PET study. Neuroimage 6, 320–334 (1997).

    CAS  Article  Google Scholar 

  5. 5

    Roland, P. E. & Gulyas, B. Visual imagery and visual representation. Trends Neurosci. 17, 281–287 (1994).

    CAS  Article  Google Scholar 

  6. 6

    D'Esposito, M. et al. A fMRI study of mental image generation. Neuropsychologia 35, 725–730 (1997).

    CAS  Article  Google Scholar 

  7. 7

    O'Craven, K. & Kanwisher, N. Mental imagery of faces and places activates corresponding stimulus-specific brain regions. J. Cog. Neurosci. (in the press).

  8. 8

    Frith, C. & Dolan, R. J. Brain mechanisms associated with top-down processes in perception. Phil. Trans. R. Soc. Lond. 352, 1221–1230 (1997).

    CAS  Article  Google Scholar 

  9. 9

    Ishai, A. & Sagi, D. Common mechanisms of visual imagery and perception. Science 268, 1772–1774 (1995).

    ADS  CAS  Article  Google Scholar 

  10. 10

    Rainer, G., Rao, S. & Miller, E. Prospective coding for objects in primate prefrontal cortex. J. Neurosci. 19, 5493–5505 (1999).

    CAS  Article  Google Scholar 

  11. 11

    Miyashita, Y. & Chang, H. S. Neuronal correlate of pictorial short-term memory in the primate temporal cortex. Nature 331, 68–71 (1988).

    ADS  CAS  Article  Google Scholar 

  12. 12

    Tomita, H., Ohbayashi, M., Nakahara, K., Hasegawa, I. & Miyashita, Y. Top-down signal from prefrontal cortex in executive control of memory retrieval. Nature 401, 699–703 (1999).

    ADS  CAS  Article  Google Scholar 

  13. 13

    Bartolomeo, P. et al. Multiple-domain dissociation between impaired visual perception and preserved mental imagery in a patient with bilateral extrastriate lesions. Neuropsychologia 36, 239–249 (1998).

    CAS  Article  Google Scholar 

  14. 14

    Fried, I., MacDonald, K. A. & Wilson, C. Single neuron activity in human hippocampus and amygdala during recognition of faces and objects. Neuron 18, 753–765 (1997).

    CAS  Article  Google Scholar 

  15. 15

    Kreiman, G., Koch, C. & Fried, I. Category-specific visual responses of single neurons in the human medial temporal lobe. Nature Neurosci. 3, 946–953 (2000).

    CAS  Article  Google Scholar 

  16. 16

    Green, D. & Swets, J. Signal detection theory and psychophysics (Wiley, New York, 1966).

    Google Scholar 

  17. 17

    Kanwisher, N. & Moscovitch, M. The cognitive neuroscience of face processing: An introduction. Cogn. Neuropsychol. 17, 1–11 (2000).

    CAS  Article  Google Scholar 

  18. 18

    Epstein, R. & Kanwisher, N. A cortical representation of the local visual environment. Nature 392, 598–601 (1998).

    ADS  CAS  Article  Google Scholar 

  19. 19

    Logothetis, N. K. & Sheinberg, D. L. Visual object recognition. Annu. Rev. Neurosci. 19, 577–621 (1996).

    CAS  Article  Google Scholar 

  20. 20

    Tanaka, K. Inferotemporal cortex and object vision. Annu. Rev. Neurosci. 19, 109–139 (1996).

    CAS  Article  Google Scholar 

  21. 21

    Gross, C. G. How inferior temporal cortex became a visual area. Cereb. Cortex 5, 455–469 (1994).

    Article  Google Scholar 

  22. 22

    Rolls, E. Neural organization of higher visual functions. Curr. Opin. Neurobiol. 1, 274–278 (1991).

    ADS  CAS  Article  Google Scholar 

  23. 23

    Miyashita, Y. Inferior temporal cortex: Where visual perception meets memory. Annu. Rev. Neurosci. 16, 245–263 (1993).

    CAS  Article  Google Scholar 

  24. 24

    Chelazzi, L., Duncan, J., Miller, E. K. & Desimone, R. Responses of neurons in inferior temporal cortex during memory-guided visual search. J. Neurophys. 80, 2918–2940 (1998).

    CAS  Article  Google Scholar 

  25. 25

    Suzuki, W. A. Neuroanatomy of the monkey entorhinal, perirhinal and parahippocampal cortices: Organization of cortical inputs and interconnections with amygdala and striatum. Semin. Neurosci. 8, 3–12 (1996).

    Article  Google Scholar 

  26. 26

    Warrington, E. & McCarthy, R. Categories of knowledge—Further fractionations and an attempted integration. Brain 110, 1273–1296 (1987).

    Article  Google Scholar 

  27. 27

    Meunier, M., Hadfield, W., Bachevalier, J. & Murray, E. Effects of rhinal cortex lesions combined with hippocampectomy on visual recognition memory in rhesus monkeys. J. Neurophysiol. 75, 1190–1205 (1996).

    CAS  Article  Google Scholar 

  28. 28

    Fried, I., Mateer, C., Ojemann, G., Wohns, R. & Fedio, P. Organization of visuospatial functions in human cortex. Brain 105, 349–371 (1982).

    CAS  Article  Google Scholar 

  29. 29

    Ojemann, G. & Mateer, C. Human language cortex: localization of memory, syntax, and sequential motor-phoneme identification systems. Science 205, 1401–1403 (1979).

    ADS  CAS  Article  Google Scholar 

  30. 30

    Penfield, W. & Jasper, H. Epilepsy And The Functional Anatomy Of The Human Brain (Little, Brown & Co., Boston, 1954).

    Google Scholar 

Download references


This work was supported by grants from NIH, the Centre for Consciousness Studies at the University of Arizona and the Keck Foundation. We thank M. Zirlinger for discussions, T. Fields, C. Wilson, E. Isham and E. Behnke for help with the recordings, F. Crick for comments and I. Wainwright for editorial assistance. We also thank all the patients who participated in these studies.

Author information



Corresponding author

Correspondence to Itzhak Fried.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kreiman, G., Koch, C. & Fried, I. Imagery neurons in the human brain. Nature 408, 357–361 (2000).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing