Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The establishment of spemann's organizer and patterning of the vertebrate embryo


Molecular studies have begun to unravel the sequential cell–cell signalling events that establish the dorsal–ventral, or 'back-to-belly', axis of vertebrate animals. In Xenopus and zebrafish, these events start with the movement of membrane vesicles associated with dorsal determinants. This mediates the induction of mesoderm by generating gradients of growth factors. Dorsal mesoderm then becomes a signalling centre, the Spemann's organizer, which secretes several antagonists of growth-factor signalling. Recent studies have led to new models for the regulation of cell–cell signalling during development, which may also apply to the homeostasis of adult tissues.

Key Points

  • Dorso-ventral asymmetry in the fertilized Xenopus egg starts when a set of parallel cortical microtubules transport small membrane vesicles, which bind Dishevelled protein on their cytoplasmic side, towards the dorsal aspect of the fertilized egg.

  • Transport of these cytoplasmic determinants is required for the differentiation of neural tissue, notochord, somite and kidney.

  • The inhibition of β-Catenin degradation in the dorsal side is the first step in a biochemical cascade that leads to dorsal development.

  • At the blastula stage, a gradient of Nodal-related TGF-β factors (Xnrs) is formed in the endoderm, which induces both ventral and dorsal mesoderm. High Xnr levels lead to the induction of Spemann's organizer tissue in the overlying dorsal mesoderm.

  • The organizer secretes a cocktail of growth factor antagonists such as Noggin, Chordin, Cerberus, Frzb-1 and Dkk-1, which further refine the pattern.

  • Chordin binds bone morphogenetic proteins (BMPs) through cysteine-rich modules, designated CRs. The inhibition of BMP by Chordin can be reversed by the combined action of Xolloid, a zinc metalloprotease, and Twisted-gastrulation (xTsg).

  • xTsg is a BMP-binding molecule that can form ternary complexes with full-length Chordin and BMP, thereby converting full-length Chordin into an even better BMP antagonist.

  • After Chordin is cleaved by Xolloid, xTsg displaces the binding of BMP to CRs, thereby promoting, rather than preventing, signalling through BMP receptors.

  • Many extracellular proteins contain CR domains of the Chordin type, raising the possibility that the studies in embryos may provide a general model for the fine regulation of signalling by growth factors in the extracellular space.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: The anatomy of Xenopus development.
Figure 2: The ultraviolet (UV) phenotype of irradiated embryos can be rescued by many different molecules.
Figure 3: Dorsal determinants and the transport of membrane vesicles to the dorsal side.
Figure 4: Two-step model of mesoderm induction in Xenopus.
Figure 5: Spemann's organizer is a source of secreted growth factor antagonists.
Figure 6: Genetics of chordin/sog in zebrafish and Drosophila.
Figure 7: A molecular pathway involving Chordin, Xolloid and Twisted-gastrulation regulates the dorsal–ventral activity gradient of bone morphogenetic protein in Xenopus.


  1. 1

    Spemann, H. Vererbung und Entwicklungsmechanik. Naturwissenchaften 12, 65–79 (1924).

    Google Scholar 

  2. 2

    Hamburger, V. The Heritage of Experimental Embryology: Hans Spemann and the Organizer (Oxford Univ. Press, Oxford, 1988).A magnificent account of the experiments that have shaped embryological thinking in the twentieth century.

    Google Scholar 

  3. 3

    Brachet, J. An old enigma: the gray crescent of amphibian eggs. Curr. Top. Dev. Biol. 11, 133–186 ( 1977).

    CAS  PubMed  Google Scholar 

  4. 4

    Gerhart, J., Doniach, T. & Stewart, R. in Gastrulation: Movements, Patterns, and Molecules (eds Keller, R. Clark, W. H. & Griffin, F.) 57– 76 (Plenum, New York, 1991).

    Google Scholar 

  5. 5

    Black, S. D. & Gerhart, J. High frequency twinning of Xenopus laevis embryos from eggs centrifuged before first cleavage. Dev. Biol. 116, 228–240 (1986).

    CAS  PubMed  Google Scholar 

  6. 6

    Harland, R. & Gerhart, J. Formation and function of Spemann's Organizer. Annu. Rev. Cell Dev. Biol. 13, 611–667 (1997).

    CAS  PubMed  Google Scholar 

  7. 7

    Heasman, J. Patterning of the Xenopus gastrula. Development 124, 4179–4191 (1997).

    CAS  PubMed  Google Scholar 

  8. 8

    Moon, R. T. & Kimelman, D. From cortical rotation to organizer gene expression: toward a molecular explanation of axis specification in Xenopus. BioEssays 20, 536– 545 (1998).

    CAS  PubMed  Google Scholar 

  9. 9

    Molenaar, M. et al. XTcf-3 transcription factor mediates β-catenin-induced axis formation in Xenopus embryos. Cell 86, 391–399 (1996).

    CAS  PubMed  Google Scholar 

  10. 10

    Zeng, L. et al. The mouse Fused locus encodes Axin, an inhibitor of the Wnt signaling pathway that regulates embryonic axis formation. Cell 90, 181–192 ( 1997).

    CAS  PubMed  Google Scholar 

  11. 11

    Wodarz, A. & Nusse, R. Mechanism of Wnt signaling in development . Annu. Rev. Cell Dev. Biol. 14, 59– 88 (1998).

    CAS  PubMed  Google Scholar 

  12. 12

    Jones, C. M., Kuehn, M. R., Hogan, B. L., Smith, J. C. & Wright, C. V. E. Nodal-related signals induce axial mesoderm and dorsal mesoderm during gastrulation. Development 121, 3651–3662 ( 1995).The original demonstration that nodal –related genes induce mesoderm and completely rescue Xenopus embryos that have been ventralized by ultraviolet radiation.

    CAS  PubMed  Google Scholar 

  13. 13

    Smith, W. C. & Harland, R. M. Expression cloning of noggin, a new dorsalizing factor localized to the Spemann organizer in Xenopus embryos. Cell 70, 829– 840 (1992).

    CAS  PubMed  Google Scholar 

  14. 14

    Sasai, Y., Lu, B., Steinbeisser, H., Geissert, D., Gont, L. K. & De Robertis, E. M. Xenopus chordin: a novel dorsalizing factor activated by organizer-specific homeobox genes. Cell 79, 779– 790 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15

    Schneider, S., Steinbeisser, H., Warga, R. M. & Hausen, P. β-Catenin translocation into nuclei demarcates the dorsalizing centers in frog and fish embryos. Mech. Dev. 57, 191–198 (1996).The dorsalizing signal affects a wide region of the embryo.

    CAS  PubMed  Google Scholar 

  16. 16

    Larabell, C. A. et al. Establishment of the dorso-ventral axis in Xenopus embryos is presaged by early asymmetries in β-Catenin that are modulated by the Wnt signaling pathway. J. Cell Biol. 136, 1123–1136 (1997). This paper describes the earliest asymmetries in the stability of the β-Catenin protein.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17

    Heasman, J. et al. Overexpression of cadherins and underexpression of β-Catenin inhibit dorsal mesoderm induction in early Xenopus embryos. Cell 79, 791–803 ( 1994).

    CAS  Google Scholar 

  18. 18

    Heasman, J., Kofron, M. & Wylie, C. β-Catenin signaling activity dissected in the early Xenopus embryo: a novel antisense approach. Dev. Biol. 222, 124–134 (2000).

    CAS  PubMed  Google Scholar 

  19. 19

    Rowning, B. A. et al. Microtubule-mediated transport of organelles and localization of β-catenin to the future dorsal side of Xenopus eggs. Proc. Natl Acad. Sci. USA 94, 1224– 1229 (1997).Membrane vesicles are transported along microtubule tracks.

    CAS  PubMed  Google Scholar 

  20. 20

    Miller, J. R. et al. Establishment of the dorsal–ventral axis in Xenopus embryos coincides with the dorsal enrichment of dishevelled that is dependent on cortical rotation. J. Cell Biol. 146, 427–437 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21

    Sumanas, S., Strege, P., Heasman, J. & Ekker, S. C. The putative Wnt receptor Xenopus frizzled-7 functions upstream of β-Catenin in vertebrate dorsoventral mesoderm patterning. Development 127, 1981–1990 (2000). This paper shows that Wnt receptors are required for dorsal–ventral patterning in Xenopus.

    CAS  PubMed  Google Scholar 

  22. 22

    Brannon, M. & Kimelman, D. Activation of siamois by the Wnt pathway. Dev. Biol. 180, 344– 347 (1996).

    CAS  PubMed  Google Scholar 

  23. 23

    Darras, S., Marikawa, Y., Elinson, R. P. & Lemaire, P. Animal and vegetal pole cells of early Xenopus embryos respond differently to maternal dorsal determinants: implications for the patterning of the organiser . Development 124, 4275– 4286 (1997).

    CAS  PubMed  Google Scholar 

  24. 24

    Jesuthasan, S. & Strahle, U. Dynamic microtubules and specification of the zebrafish embryonic axis. Curr. Biol. 7, 31–42 (1997 ).

    CAS  PubMed  Google Scholar 

  25. 25

    Ober, E. A. & Schulte-Merker, S. Signals from the yolk cell induce mesoderm, neuroectoderm, the trunk organizer, and the notochord in zebrafish. Dev. Biol. 215, 167– 181 (1999).

    CAS  PubMed  Google Scholar 

  26. 26

    Mizuno, T., Yamaha, E., Kuroiwa, A. & Takeda, H. Removal of vegetal yolk causes dorsal deficiencies and impairs dorsal-inducing ability of the yolk cell in zebrafish. Mech. Dev. 81, 51 –63 (1999).

    CAS  PubMed  Google Scholar 

  27. 27

    Dohmen, M. R. & Verdonk, N. H. in Determinants of Spatial Organization (eds Subtelny, S. & Konigsberg, I. R.) 3– 27 (Academic, New York, 1979).

    Google Scholar 

  28. 28

    Liu, P. et al. Requirement for Wnt3 in vertebrate axis formation. Nature Genet. 22, 361–365 (1999).

    CAS  PubMed  Google Scholar 

  29. 29

    Huelsken, J. et al. Requirement for β-Catenin in anterior–posterior axis formation in mice. J. Cell Biol. 148, 567–578 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30

    Gilbert, S. F. Developmental Biology 6th edn 303– 338 (Sinauer, Sunderland, Massachusetts, 2000).

    Google Scholar 

  31. 31

    Wylie, C. et al. Maternal β-Catenin establishes a 'dorsal signal' in early Xenopus embryos. Development 122, 2987 –2996 (1996).Mesoderm induction takes place shortly after the midblastula stage of Xenopus development.

    CAS  PubMed  Google Scholar 

  32. 32

    Zhou, X., Sasaki, H., Lowe, L., Hogan, B. L. M. & Kuehn, M. R. nodal is a novel TGF-β-like gene expressed in the mouse node during gastrulation. Nature 361, 543–547 (1993).

    CAS  PubMed  Google Scholar 

  33. 33

    Conlon, F. L. et al. A primary requirement for nodal in the formation and maintenance of the primitive streak in the mouse. Development 120, 1919–1928 (1994).

    CAS  PubMed  Google Scholar 

  34. 34

    Schier, A. F. & Shen, M. M. Nodal signalling in vertebrate development . Nature 403, 385–389 (2000).

    CAS  PubMed  Google Scholar 

  35. 35

    Feldman, B. et al. Zebrafish organizer development and germ-layer formation require nodal-related signals. Nature 395, 181– 185 (1998).

    CAS  PubMed  Google Scholar 

  36. 36

    Joseph, E. M. & Melton, D. A. Xnr4: A Xenopus Nodal-related gene expressed in the Spemann organizer. Dev. Biol. 184, 367–372 ( 1997).

    CAS  PubMed  Google Scholar 

  37. 37

    Bouwmeester, T., Kim, S. H., Sasai, Y., Lu, B. & De Robertis, E. M. Cerberus is a head-inducing secreted factor expressed in the anterior endoderm of Spemann's organizer. Nature 382, 595–601 (1996).

    CAS  PubMed  Google Scholar 

  38. 38

    Piccolo, S. et al. The head inducer Cerberus is a multifunctional antagonist of Nodal, BMP and Wnt signals. Nature 397, 707–710 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39

    Agius, E., Oelgeschläger, M., Wessely, O., Kemp, C. & De Robertis, E. M. Endodermal Nodal-related signals and mesoderm induction in Xenopus. Development 127, 1173–1183 (2000). Dorsal and ventral mesoderm is mediated by Nodal–related signals.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40

    Faure, S., Lee, M. A., Keller, T., ten Dijke, P. & Whitman, M. Endogenous patterns of TGFbeta superfamily signaling during early Xenopus development. Development 127, 2917–2931 (2000).

    CAS  PubMed  Google Scholar 

  41. 41

    Henry, G. L. & Melton, D. A. Mixer, a homeobox gene required for endoderm development. Science 281, 91–96 (1998).

    CAS  PubMed  Google Scholar 

  42. 42

    Zhang, J. et al. The role of maternal VegT in establishing the primary germ layers in Xenopus embryos. Cell 94, 515– 524 (1998).

    CAS  PubMed  Google Scholar 

  43. 43

    Kofron, M. et al. Mesoderm induction in Xenopus is a zygotic event regulated by maternal VegT via TGFβ growth factors. Development 126, 5759–5770 (1999).

    CAS  PubMed  Google Scholar 

  44. 44

    Sharpe, C. R., Fritz, A. F., De Robertis, E. M. & Gurdon, J. B. A homeobox-containing marker of posterior neural differentiation shows the importance of predetermination in neural induction. Cell 50, 749–758 (1987).

    CAS  PubMed  Google Scholar 

  45. 45

    Baker, J. C., Beddington, R. S. & Harland, R. M. Wnt signaling in Xenopus embryos inhibits BMP4 expression and activates neural development. Genes Dev. 13, 3149–3159 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. 46

    Beanan, M. J., Feledy, J. A. & Sargent, T. D. Regulation of early expression of Dlx3, a Xenopus anti-neural factor, by beta-catenin signaling. Mech. Dev. 91, 227–235 ( 2000).

    CAS  PubMed  Google Scholar 

  47. 47

    Koos, D. S. & Ho, R. K. The nieuwkoid/dharma homeobox gene is essential for bmp2b repression in the zebrafish pregastrula . Dev. Biol. 215, 190–207 (1999).

    CAS  PubMed  Google Scholar 

  48. 48

    Fekany-Lee, K., Gonzalez, E., Miller-Bertoglio, V. & Solnica-Krezel, L. The homeobox gene bozozok promotes anterior neuroectoderm formation in zebrafish through negative regulation of BMP2/4 and Wnt pathways. Development 127, 2333–2345 (2000).

    CAS  PubMed  Google Scholar 

  49. 49

    Watabe, T. et al. Molecular mechanisms of Spemann's organizer formation: conserved growth factor synergy between Xenopus and mouse. Genes Dev . 9, 3038–3050 ( 1995).

    CAS  PubMed  Google Scholar 

  50. 50

    Laurent, M. N., Blitz, I. L., Hashimoto, C., Rothbächer, U. & Cho, K. W. Y. The Xenopus homeobox gene Twin mediates Wnt induction of Goosecoid in establishment of Spemann's organizer. Development 124, 4905–4916 (1997).

    CAS  PubMed  Google Scholar 

  51. 51

    Germain, S., Howell, M., Esslemont, G. M. & Hill, C. S. Homeodomain and winged-helix transcription factors recruit activated Smads to distinct promoter elements via a common Smad interaction motif. Genes Dev. 14, 435–451 ( 2000).This paper shows that Smads are recruited to the goosecoid promoter through an interaction with the homeodomain protein, Mixer.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. 52

    Kessler, D. S. Siamois is required for the formation of Spemann's organizer. Proc. Natl Acad. Sci. USA 94, 13017– 13022 (1997).

    CAS  PubMed  Google Scholar 

  53. 53

    Whitman, M. SMADs and early developmental signaling by the TGFβ superfamily. Genes Dev. 9, 3038–3050 (1998).

    Google Scholar 

  54. 54

    Nishita, M. et al. Interaction between Wnt and TGF-β signalling pathways during formation of Spemann's organizer. Nature 403 , 781–782 (2000).

    CAS  PubMed  Google Scholar 

  55. 55

    Labbe, E., Letamendia, A. & Attisano, L. Association of Smads with lymphoid enhancer binding factor 1/T cell-specific factor mediates cooperative signaling by the Transforming growth factor-β and Wnt pathways. Proc. Natl Acad. Sci. USA 97, 8358–8363 ( 2000).

    CAS  PubMed  Google Scholar 

  56. 56

    Henry, G. L., Brivanlou, I. H., Kessler, D. S., Hemmati-Brivanlou, A. & Melton, D. A. TGF-β signals and a pattern in Xenopus laevis endodermal development. Development 122, 1007–1015 (1996).

    CAS  PubMed  Google Scholar 

  57. 57

    Yasuo, H. & Lemaire, P. A two-step model for the fate determination of presumptive endodermal blastomeres in Xenopus embryos. Curr. Biol. 9, 869–879 ( 1999).

    CAS  PubMed  Google Scholar 

  58. 58

    Shimizu, T. et al. Cooperative roles of Bozozok/Dharma and Nodal-related proteins in the formation of the dorsal organizer in zebrafish. Mech. Dev. 91, 293–303 ( 2000).

    CAS  PubMed  Google Scholar 

  59. 59

    Sirotkin, H. I., Dougan, S. T., Schier, A. F. & Talbot, W. S. bozozok and squint act in parallel to specify dorsal mesoderm and anterior neuroectoderm in zebrafish. Development 127 , 2583–2592 (2000).

    CAS  PubMed  Google Scholar 

  60. 60

    Fainsod, A. et al. The dorsalizing and neural inducing gene follistatin is an antagonist of BMP-4. Mech. Dev. 63, 39– 50 (1997).

    CAS  PubMed  Google Scholar 

  61. 61

    Kao, K. R. & Elinson, R. P. The entire mesodermal mantle behaves as Spemann's organizer in dorsoanterior enhanced Xenopus laevis embryos. Dev. Biol. 127, 64– 77 (1988).

    CAS  PubMed  Google Scholar 

  62. 62

    Klein, P. S. & Melton, D. A. A molecular mechanism for the effect of lithium on development. Proc. Natl Acad. Sci. USA 93, 8455–8459 (1996).

    CAS  PubMed  Google Scholar 

  63. 63

    Onichtchouk, D. et al. The Xvent-2 homeobox gene is part of the BMP-4 signalling pathway controlling dorsoventral patterning of Xenopus mesoderm. Development 122, 3045–3053 (1996).

    CAS  PubMed  Google Scholar 

  64. 64

    Melby, A. E., Clements, W. K. & Kimelman, D. Regulation of dorsal gene expression in Xenopus by the ventralizing homeodomain gene Vox. Dev. Biol. 211, 293–305 (1999).

    CAS  PubMed  Google Scholar 

  65. 65

    Melby, A. E., Beach, C., Mullins, M. & Kimelman, D. Patterning the early zebrafish by the opposing actions of bozozok and vox/vent. Dev. Biol. 224, 275–285 (2000).

    CAS  PubMed  Google Scholar 

  66. 66

    Piccolo, S., Sasai, Y., Lu, B. & De Robertis, E. M. Dorsoventral patterning in Xenopus: Inhibition of ventral signals by direct binding of Chordin to BMP-4. Cell 86, 589– 598 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. 67

    Zimmerman, L. B., De Jesús-Escobar, J. M. & Harland, R. M. The Spemann organizer signal noggin binds and inactivates bone morphogenetic protein 4. Cell 86, 599–606 ( 1996).

    CAS  PubMed  Google Scholar 

  68. 68

    Iemura, S. et al. Direct binding of follistatin to a complex of bone-morphogenetic protein and its receptor inhibits ventral and epidermal cell fates in early Xenopus embryo. Proc. Natl Acad. Sci. USA 95, 9337–9342 (1998).

    CAS  PubMed  Google Scholar 

  69. 69

    Leyns, L., Bouwmeester, T., Kim, S.-H., Piccolo, S. & De Robertis, E. M. Frzb-1 is a secreted antagonist of Wnt signaling expressed in the Spemann Organizer. Cell 88, 747–756 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. 70

    Wang, S., Krinks, M., Lin, K., Luyten, F. P. & Moos, M. Frzb, a secreted protein expressed in the Spemann Organizer, binds and inhibits Wnt-8. Cell 88, 757– 766 (1997).

    CAS  PubMed  Google Scholar 

  71. 71

    Pera, E. & De Robertis, E. M. A direct screen for secreted proteins in Xenopus embryos identifies distinct activities for the Wnt antagonists Crescent and Frzb-1. Mech. Dev. 96, 183–195 (2000).

    CAS  PubMed  Google Scholar 

  72. 72

    Salic, A. N., Kroll, K. L., Evans, L. M. & Kirschner, M. W. Sizzled: a secreted Xwnt8 antagonist expressed in the ventral marginal zone of Xenopus embryos. Development 124, 4739–4748 (1997).

    CAS  PubMed  Google Scholar 

  73. 73

    Glinka, A. et al. Dickkopf-1 is a member of a new family of secreted proteins and functions in head induction. Nature 391, 357–362 (1998).This paper describes the isolation of Dickkopf-1, a new Wnt antagonist.

    CAS  PubMed  Google Scholar 

  74. 74

    Hoppler, S., Brown, J. D. & Moon, R. T. Expression of a dominant-negative Wnt blocks induction of MyoD in Xenopus embryos. Genes. Dev. 10, 2805–2817 (1996).

    CAS  PubMed  Google Scholar 

  75. 75

    Glinka, A., Wu, W., Onichtchouk, D., Blumestock, C. & Niehrs, C. Head induction by simultaneous repression of Bmp and Wnt signalling in Xenopus. Nature 389, 517–519 (1997).

    CAS  PubMed  Google Scholar 

  76. 76

    Pearce, J. J. H., Penny, G. & Rossant, J. A mouse cerberus/Dan-related gene family. Dev. Biol. 209, 98–110 ( 1999).

    CAS  PubMed  Google Scholar 

  77. 77

    Meno, C. et al. Left–right asymmetric expression of the TGF-β-family member lefty in mouse embryos. Nature 381, 151–155 (1996).

    CAS  PubMed  Google Scholar 

  78. 78

    Thisse, C. & Thisse, B. Antivin, a novel and divergent member of the TGFβ superfamily, negatively regulates mesoderm induction. Development 126, 229–240 (1999).

    CAS  PubMed  Google Scholar 

  79. 79

    Meno, C. et al. Mouse Lefty2 and Zebrafish Antivin are feedback inhibitors of Nodal signaling during vertebrate gastrulation. Mol. Cell 4, 287–298 (1999).

    CAS  PubMed  Google Scholar 

  80. 80

    Cheng, A. M., Thisse, B., Thisse, C. & Wright, C. V. The lefty-related factor Xatv acts as a feedback inhibitor of nodal signaling in mesoderm induction and L–R axis development in Xenopus. Development 127, 1049–1061 (2000).

    CAS  PubMed  Google Scholar 

  81. 81

    Hansen, C. S., Marion, C. D., Steele, K., George, S. & Smith, W. C. Direct neural induction and selective inhibition of mesoderm and epidermis inducers by Xnr3. Development 124, 483–492 ( 1997).

    CAS  PubMed  Google Scholar 

  82. 82

    Larraín, J. et al. BMP-binding modules in chordin: a model for signalling regulation in the extracellular space. Development 127, 821–830 (2000).The Chordin cysteine-rich domains are sufficient for BMP binding and procollagen II has anti-BMP activity.

    PubMed  PubMed Central  Google Scholar 

  83. 83

    Schulte-Merker, S., Lee, K. J., McMahon, A. P. & Hammerschmidt, M. The zebrafish organizer requires chordino. Nature 387, 862–863 (1997).

    CAS  PubMed  Google Scholar 

  84. 84

    Fisher, S. & Halpern, M. E. Patterning the zebrafish axial skeleton requires early chordin function. Nature Genet. 23, 442–446 (1999).

    CAS  PubMed  Google Scholar 

  85. 85

    Hammerschmidt, M., Serbedzija, G. N. & McMahon, A. P. Genetic analysis of dorsoventral pattern formation in the zebrafish: requirement of a BMP-like ventralizing activity and its dorsal repressor. Genes Dev. 10, 2452– 2461 (1996).

    CAS  PubMed  Google Scholar 

  86. 86

    Kishimoto, Y., Lee, K.-H., Zon, L., Hammerschmidt, M. & Schulte-Merker, S. The molecular nature of swirl: BMP2 function is essential during early dorsoventral patterning. Development 124, 4457–4466 ( 1997).

    CAS  PubMed  Google Scholar 

  87. 87

    Hild, M. et al. The smad5 mutation somitabun blocks Bmp2b signaling during early dorsoventral patterning of the zebrafish embryo. Development 126, 2149–2159 (1999).

    CAS  PubMed  Google Scholar 

  88. 88

    Schmid, B. et al. Equivalent genetic roles for bmp7/snailhouse and bmp2b/swirl in dorsoventral pattern formation. Development 127, 957–967 (2000).

    CAS  PubMed  Google Scholar 

  89. 89

    Bachiller, D. et al. The organizer secreted factors Chordin and Noggin are required for forebrain development in the mouse. Nature 403, 658–661 (2000).

    CAS  PubMed  Google Scholar 

  90. 90

    François, V., Solloway, M., O'Neill, J. W., Emery, J. & Bier, E. Dorsal-ventral patterning of the Drosophila embryo depends on a putative negative growth factor encoded by the short gastrulation gene. Genes Dev. 8 , 2602–2616 (1994).

    PubMed  Google Scholar 

  91. 91

    Holley, S. A. et al. A conserved system for dorsal–ventral patterning in insects and vertebrates involving short gastrulation and chordin. Nature 376, 249–253 ( 1995).

    CAS  PubMed  Google Scholar 

  92. 92

    Ferguson, E. L. & Anderson, K. V. Localized enhancement and repression of the activity of the TGF-β family member, decapentaplegic, is necessary for dorsal–ventral pattern formation in the Drosophila embryo. Development 114, 583–597 (1992).This paper describes the original genetic analysis that revealed that tolloid and short-gastrulation interact with the BMP pathway.

    CAS  PubMed  Google Scholar 

  93. 93

    Neul, J. L. & Ferguson, E. L. Spatially restricted activation of the SAX receptor by SCW modulates DPP/TKV signaling in Drosophila dorsal–ventral patterning. Cell 95, 483–494 (1998).

    CAS  PubMed  Google Scholar 

  94. 94

    Nguyen, M., Park, S., Marqués, G. & Arora, K. Interpretation of a BMP activity gradient in Drosophila embryos depends on synergistic signaling by two type I receptors, SAX and TKV. Cell 95, 495–506 ( 1998).

    CAS  PubMed  Google Scholar 

  95. 95

    Holley, S. A. et al. The Xenopus dorsalizing factor noggin ventralizes Drosophila embryos by preventing DPP from activating its receptor. Cell 86, 607–617 ( 1996).

    CAS  PubMed  Google Scholar 

  96. 96

    Ashe, H. L. & Levine, M. Local inhibition and long-range enhancement of Dpp signal transduction by Sog. Nature 398, 427–431 (1999).

    CAS  PubMed  Google Scholar 

  97. 97

    Connors, S. A., Trout, J., Ekker, M. & Mullins, M. C. The role of tolloid/minifin in dorsoventral pattern formation of the zebrafish embryo . Development 126, 3119– 3130 (1999).

    CAS  PubMed  Google Scholar 

  98. 98

    Piccolo, S. et al. Cleavage of Chordin by the Xolloid metalloprotease suggests a role for proteolytic processing in the regulation of Spemann organizer activity . Cell 91, 407–416 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. 99

    Marqués, G. et al. Production of DPP activity gradient in the early Drosophila embryo through the opposing actions of the SOG and TLD proteins. Cell 91, 417–426 ( 1997).References 98 and 99 show that inactive BMP/Chordin or DPP/SOG complexes are regulated by specific cleavage by the Tolloid protease.

    PubMed  Google Scholar 

  100. 100

    Scott, I. C. et al. Mammalian BMP-1/Tolloid-related metalloproteinases, including novel family member mammalian Tolloid-like 2, have differential enzymatic activities and distributions of expression relevant to patterning and skeletogenesis . Dev. Biol. 213, 283–300 (1999).

    CAS  PubMed  Google Scholar 

  101. 101

    Mason, E. D., Konrad, K. D., Webb, C. D. & Marsh, J. L. Dorsal midline fate in Drosophila embryos requires twisted gastrulation, a gene encoding a secreted protein related to human connective tissue growth factor. Genes Dev. 8, 1489– 1501 (1994).

    CAS  PubMed  Google Scholar 

  102. 102

    Mason, E. D., Williams, S., Grotendorst, G. R. & Marsh, J. L. Combinatorial signaling by Twisted Gastrulation and Decapentaplegic. Mech. Dev. 64, 61–75 ( 1997).

    CAS  PubMed  Google Scholar 

  103. 103

    Oelgeschläger, M., Larraín, J., Geissert, D. & De Robertis, E. M. The evolutionarily conserved BMP-binding protein Twisted gastrulation promotes BMP signalling. Nature 405, 757– 763 (2000).xTsg is a BMP-binding protein that functions in a biochemical pathway together with Chordin, Xolloid and BMP.

    PubMed  PubMed Central  Google Scholar 

  104. 104

    Niehrs, C. & Pollet, N. Synexpression groups in eukaryotes . Nature 402, 483–487 (1999).

    CAS  PubMed  Google Scholar 

  105. 105

    Yu, K. et al. Processing of the Drosophila Sog protein creates a novel BMP inhibitory activity. Development 127, 2143–2154 (2000). Proteolytic fragments of Short-gastrulation, called Supersogs, have BMP inhibitory activities.

    CAS  PubMed  Google Scholar 

  106. 106

    Zhu, Y., Oganesian, A., Keene, D. R. & Sandell, L. J. Type IIA procollagen containing the cysteine-rich amino propeptide is deposited in the extracellular matrix of prechondrogenic tissue and binds to TGF-β1 and BMP-2. J. Cell Biol. 144, 1069– 1080 (1999).The aminopropeptide of collagen II is retained in collagen fibres and binds BMP-4 and TGF-β1.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. 107

    Matsuhashi, S. et al. New gene, nel, encoding a Mr 93K protein with EGF-like repeats is strongly expressed in neural tissues of early stage chick embryos . Dev. Dyn. 203, 212–222 (1995).

    CAS  PubMed  Google Scholar 

  108. 108

    Conley, C. A. et al. Crossveinless 2 contains cysteine-rich domains and is required for high levels of BMP-like activity during the formation of the cross veins in Drosophila. Development 127, 3947 –3959 (2000).

    CAS  PubMed  Google Scholar 

  109. 109

    Kolle, G., Georgas, K., Holmes, G. P., Little, M. H. & Yamada, T. CRIM1, a novel gene encoding a cysteine-rich repeat protein, is developmentally regulated and implicated in vertebrate CNS development and organogenesis. Mech. Dev. 90, 181–193 (2000).

    CAS  PubMed  Google Scholar 

  110. 110

    Matsui, M., Mizuseki, K., Nakatani, J., Nakanishi, S. & Sasai, Y. Xenopus kielin: A dorsalizing factor containing multiple chordin-type repeats secreted from the embryonic midline. Proc. Natl Acad. Sci. USA 97, 5291 –5296 (2000).

    CAS  PubMed  Google Scholar 

  111. 111

    Polakis, P. Wnt signaling and cancer. Genes Dev. 14, 1837–1851 (2000).

    CAS  PubMed  Google Scholar 

  112. 112

    De Robertis, E. M. & Sasai, Y. A. A common plan for dorso–ventral patterning in Bilateria. Nature 380, 37–40 (1996).

    CAS  PubMed  Google Scholar 

Download references


We apologize to the many colleagues whose work we were unable to discuss owing to space limitations. We thank J. Abreu, J.I. Kim and E. Pera for comments on the manuscript. J.L. is a PEW Latin American Fellow, and M.O. and O.W. are Human Frontiers Science Program Organization postdoctoral fellows. Our laboratory is supported by the NIH and the Howard Hughes Medical Institute.

Author information



Supplementary information

Related links

Related links













Frizzled-7 Wnt receptor















zebrafish Goosecoid






















Drosophila Tolloid

zebrafish tolloid



procollagen I

N-terminal proteinase

procollagen II

procollagen V









The zebrafish information network


De Robertis lab homepage


Xenopus embryo: β-Catenin and dorso–ventral axis formation

BMP antagonists and neural induction



Region of reduced pigmentation that marks the future dorsal side of the fertilized egg.


(BMPs). Molecules of the TGF-β family that can induce bone formation and ventralize the vertebrate embryo. In zebrafish, a mutation in either BMP-2b or BMP-7 has a similar effect, suggesting that they work as heterodimers; either mutation also inhibits transcription of BMP-4.


Transient rod-like structure derived from the endoderm, which is located beneath the notochord in vertebrate embryos.


A group of genes that have similar expression domains in the embryo, which usually correlate with function in a common biochemical pathway.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

De Robertis, E., Larraín, J., Oelgeschläger, M. et al. The establishment of spemann's organizer and patterning of the vertebrate embryo. Nat Rev Genet 1, 171–181 (2000).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing