The age of cancer

Abstract

A striking link exists between advanced age and increased incidence of cancer. Here I review how several of the age-related molecular and physiological changes might act in concert to promote cancer, and in particular epithelial carcinogenesis. Experimental data indicate that the aged, cancer-prone phenotype might represent the combined pathogenetic effects of mutation load, epigenetic regulation, telomere dysfunction and altered stromal milieu. Further verification of the role of these effects should in turn lead to the design of effective therapeutics for the treatment and prevention of cancer in the aged.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Cancer incidence as a function of age.
Figure 2: Tumour spectrum in human and mouse.
Figure 3: Fusion–bridge–breakage mechanism and cytogenetic profiles.
Figure 4: Dysfunctional telomere-induced genomic instability model of epithelial carcinogenesis.

References

  1. 1

    American Cancer Society. Cancer Facts and Figures 2000 1–7 (American Cancer Society, Atlanta, 2000).

  2. 2

    Bishop, J. M. Molecular themes in oncogenesis. Cell 64, 235–248 (1991).

    Article  CAS  Google Scholar 

  3. 3

    Nowell, P. C. The clonal evolution of tumor cell populations. Science 194, 23–28 (1976).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  4. 4

    Vogelstein, B. et al. Genetic alterations during colorectal-tumor development. N. Engl. J. Med. 319, 525–532 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. 5

    Balaban, G. B., Herlyn, M., Clark, W. H. Jr & Nowell, P. C. Karyotypic evolution in human malignant melanoma. Cancer Genet. Cytogenet. 19, 113–122 ( 1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. 6

    Naylor, S. L., Johnson, B. E., Minna, J. D. & Sakaguchi, A. Y. Loss of heterozygosity of chromosome 3p markers in small-cell lung cancer . Nature 329, 451–454 (1987).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  7. 7

    James, C. D. et al. Clonal genomic alterations in glioma malignancy stages. Cancer Res. 48, 5546–5551 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. 8

    Rabinovitch, P. S., Reid, B. J., Haggitt, R. C., Norwood, T. H. & Rubin, C. E. Progression to cancer in Barrett's esophagus is associated with genomic instability. Lab. Invest. 60, 65–71 ( 1988).

    Google Scholar 

  9. 9

    Harman, D. Aging: a theory based on free-radical and radiation chemistry. J. Gerontol. 6, 298–300 (1956).

    Article  Google Scholar 

  10. 10

    Ames, B. N., Shigenaga, M. K. & Hagen, T. M. Oxidants, antioxidants and the degenerative diseases of aging. Proc. Natl Acad. Sci. USA 90, 7915–7922 (1993).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  11. 11

    Minnick, D. T. & Kunkel, T. A. DNA synthesis errors, mutators and cancer. Cancer Surv. 28, 3–20 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12

    Oller, A. R., Rastogi, P., Morgenthaler, S. & Thilly, W. G. A statistical model to estimate variance in long term-low dose mutation assays: testing of the model in a human lymphoblastoid mutation assay. Mutat. Res. 216, 149–161 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. 13

    Jackson, A. L. & Loeb, L. A. The mutation rate and cancer. Genetics 148, 1483– 1490 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14

    Armitage, P. & Doll, R. The age distribution of cancer and a multi-stage theory of carcinogenesis. Br. J. Cancer 8, 1–12 (1954).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. 15

    Renan, M. J. How many mutations are required for tumorigenesis? Implications from human cancer data. Mol. Carcinog. 7, 139– 146 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. 16

    Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell 100, 57–70 ( 2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. 17

    Loeb, L. A. Mutator phenotype may be required for multistage carcinogenesis. Cancer Res. 51, 3075–3079 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18

    Kinzler, K. W. & Vogelstein, B. Lessons from hereditary colorectal cancer. Cell 87, 159 –170 (1996).

    Article  CAS  Google Scholar 

  19. 19

    Lengauer, C., Kinzler, K. W. & Vogelstein, B. Genetic instability in colorectal cancers. Nature 386, 623–627 ( 1997).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  20. 20

    Gray, J. W. & Collins, C. Genome changes and gene expression in human solid tumors. Carcinogenesis 21, 443–452 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. 21

    Weinberg, R. The cat and mouse games that genes, viruses, and cells play. Cell 88, 573–575 ( 1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. 22

    Turker, M. S. Estimation of mutation frequencies in normal mammalian cells and the development of cancer. Semin. Cancer Biol. 8, 407– 419 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. 23

    Dolle, M. E. et al. Rapid accumulation of genome rearrangements in liver but not in brain of old mice. Nature Genet. 17, 431–434 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. 24

    Dolle, M. E., Snyder, W. K., Gossen, J. A., Lohman, P. H. & Vijg, J. Distinct spectra of somatic mutations accumulated with age in mouse heart and small intestine. Proc. Natl Acad. Sci. USA 97, 8403–8408 (2000).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  25. 25

    Vijg, J. & Dolle, M. E. T. in Handbook of the Biology of Ageing 5th edn (eds Masoro, E. J. & Austad, S. N.) (Academic, in the press).

  26. 26

    Curtis, H. & Crowley, C. Chromosome aberrations in liver cells in relation to the somatic mutation theory of aging. Radiat. Res. 19, 337–344 ( 1963).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  27. 27

    Ly, D. H., Lockhart, D. J., Lerner, R. A. & Schultz, P. G. Mitotic misregulation and human aging. Science 287, 2486–2492 (2000).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  28. 28

    Ramsey, M. J. et al. The effects of age and lifestyle factors on the accumulation of cytogenetic damage as measured by chromosome painting. Mutat. Res. 338, 95–106 ( 1995).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  29. 29

    Jacobs, P., Brunton, M., Brown, W., Doll, R. & Goldstein, H. Change of human chromosome count distributions with age: evidence for a sex difference. Nature 197, 1080–1081 (1963).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  30. 30

    Tucker, J. D., Spruill, M. D., Ramsey, M. J., Director, A. D. & Nath, J. Frequency of spontaneous chromosome aberrations in mice: effects of age. Mutat. Res. 425 , 135–141 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. 31

    Moriwaki, S., Ray, S., Tarone, R. E., Kraemer, K. H. & Grossman, L. The effect of donor age on the processing of UV-damaged DNA by cultured human cells: reduced DNA repair capacity and increased DNA mutability. Mutat. Res. 364, 117– 123 (1996).

    Article  PubMed  PubMed Central  Google Scholar 

  32. 32

    Goukassian, D. et al. Mechanisms and implications of the age-associated decrease in DNA repair capacity. FASEB J. 14, 1325 –1334 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. 33

    Liu, S. C., Parsons, C. S. & Hanawalt, P. C. DNA repair response in human epidermal keratinocytes from donors of different age. J. Invest. Dermatol. 79, 330–335 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. 34

    Kolodner, R. D. et al. Germ-line msh6 mutations in colorectal cancer families. Cancer Res. 59, 5068–5074 (1999).

    CAS  Google Scholar 

  35. 35

    Baylin, S. B. & Herman, J. G. DNA hypermethylation in tumorigenesis: epigenetics joins genetics. Trends Genet. 16, 168–174 (2000).

    Article  CAS  Google Scholar 

  36. 36

    Jones, P. A. & Laird, P. W. Cancer epigenetics comes of age . Nature Genet. 21, 163– 167 (1999).

    Article  CAS  Google Scholar 

  37. 37

    Issa, J. P. et al. Methylation of the oestrogen receptor CpG island links ageing and neoplasia in human colon. Nature Genet. 7, 536–540 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. 38

    Issa, J. P. Aging, DNA methylation and cancer. Crit. Rev. Oncol. Hematol. 32, 31–43 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. 39

    Cormier, R. T. & Dove, W. F. Dnmt1N/+ reduces the net growth rate and multiplicity of intestinal adenomas in C57BL/6-multiple intestinal neoplasia (Min)/+ mice independently of p53 but demonstrates strong synergy with the modifier of Min 1(AKR) resistance allele. Cancer Res. 60, 3965–3970 ( 2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40

    Laird, P. W. et al. Suppression of intestinal neoplasia by DNA hypomethylation . Cell 81, 197–205 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. 41

    Rhee, I. et al. CpG methylation is maintained in human cancer cells lacking DNMT1 . Nature 404, 1003–1007 (2000).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  42. 42

    DePinho, R. A. & Sherr, C. J. Cellular senescence: mitotic clock or culture shock? Cell 102, 407–410 (2000).

    Article  PubMed  PubMed Central  Google Scholar 

  43. 43

    Atkin, N. B. Solid tumor cytogenetics. Progress since 1979. Cancer Genet. Cytogenet. 40, 3–12 (1989 ).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. 44

    Artandi, S. E. et al. Telomere dysfunction promotes non-reciprocal translocations and epithelial cancers in mice. Nature 406, 641–645 (2000).

    Article  ADS  CAS  Google Scholar 

  45. 45

    Greider, C. Telomerase activity, cell proliferation, and cancer. Proc. Natl Acad. Sci. USA 95, 90 (1998).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  46. 46

    Harley, C. B., Futcher, A. B. & Greider, C. W. Telomeres shorten during ageing of human fibroblasts . Nature 345, 458–460 (1990).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  47. 47

    Hastie, N. D. et al. Telomere reduction in human colorectal carcinoma and with ageing. Nature 346, 866– 868 (1990).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  48. 48

    Allsopp, R. C. et al. Telomere length predicts replicative capacity of human fibroblasts . Proc. Natl Acad. Sci. USA 89, 10114– 10118 (1992).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  49. 49

    Chadeneau, C., Hay, K., Hirte, H. W., Gallinger, S. & Bacchetti, S. Telomerase activity associated with acquisition of malignancy in human colorectal cancer. Cancer Res. 55, 2533–2536 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50

    Kipling, D. & Cooke, H. J. Hypervariable ultra-long telomeres in mice. Nature 347, 400– 402 (1990).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  51. 51

    Prowse, K. R. & Greider, C. W. Developmental and tissue-specific regulation of mouse telomerase and telomere length. Proc. Natl Acad. Sci. USA 92, 4818–4822 (1995).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  52. 52

    Broccoli, D., Godley, L. A., Donehower, L. A., Varmus, H. E. & de, L. T. Telomerase activation in mouse mammary tumors: lack of detectable telomere shortening and evidence for regulation of telomerase RNA with cell proliferation. Mol. Cell. Biol. 16, 3765–3772 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. 53

    Greenberg, R. A., Allsopp, R. C., Chin, L., Morin, G. B. & DePinho, R. A. Expression of mouse telomerase reverse transcriptase during development, differentiation and proliferation. Oncogene 16, 1723–1730 ( 1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. 54

    Martin-Rivera, L., Herrera, E., Albar, J. & Blasco, M. A. Expression of mouse telomerase catalytic subunit in embryos and adult tissues. Proc. Natl Acad. Sci. USA 95, 10471– 10476 (1998).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  55. 55

    Counter, C. M. et al. Telomere shortening associated with chromosome instability is arrested in immortal cells which express telomerase activity. EMBO J. 11, 1921–1929 ( 1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. 56

    McClintock, B. The stability of broken ends of chromosomes in Zea mays. Genetics 26, 234–282 ( 1941).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. 57

    Nishizaki, T. et al. Genetic alterations in primary breast cancers and their metastases: direct comparison using modified comparative genomic hybridization. Genes Chromosomes Cancer 19, 267–272 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. 58

    Buerger, H. et al. Comparative genomic hybridization of ductal carcinoma in situ of the breast-evidence of multiple genetic pathways. J. Pathol. 187, 396–402 ( 1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. 59

    Al-Mulla, F., Keith, W. N., Pickford, I. R., Going, J. J. & Birnie, G. D. Comparative genomic hybridization analysis of primary colorectal carcinomas and their synchronous metastases . Genes Chromosomes Cancer 24, 306– 314 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. 60

    Tang, R., Cheng, A. J., Wang, J. Y. & Wang, T. C. Close correlation between telomerase expression and adenomatous polyp progression in multistep colorectal carcinogenesis. Cancer Res. 58, 4052–4054 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. 61

    Lee, H. W. et al. Essential role of mouse telomerase in highly proliferative organs. Nature 392, 569– 574 (1998).

    Article  ADS  CAS  Google Scholar 

  62. 62

    Rudolph, K. L. et al. Longevity, stress response, and cancer in aging telomerase-deficient mice. Cell 96, 701–712 (1999).

    Article  CAS  Google Scholar 

  63. 63

    de Lange, T. Activation of telomerase in a human tumor. Proc. Natl Acad. Sci. USA 91, 2882–2885 ( 1994).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  64. 64

    Foley, K. P. & Eisenman, R. N. Two MAD tails: what the recent knockouts of Mad1 and Mxi1 tell us about the MYC/MAX/MAD network. Biochim. Biophys. Acta 1423, M37–M47 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. 65

    Rudolph, K. L., Chang, S., Millard, M., Schreiber-Agus, N. & DePinho, R. A. Inhibition of experimental liver cirrhosis in mice by telomerase gene delivery. Science 287, 1253–1258 (2000).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  66. 66

    Kitada, T., Seki, S., Kawakita, N., Kuroki, T. & Monna, T. Telomere shortening in chronic liver diseases. Biochem. Biophys. Res. Commun. 211, 33– 39 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. 67

    Miura, N. et al. Progressive telomere shortening and telomerase reactivation during hepatocellular carcinogenesis. Cancer Genet. Cytogenet. 93, 56–62 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. 68

    Urabe, Y. et al. Telomere length in human liver diseases. Liver 16, 293–297 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. 69

    Weinberg, R. A. The retinoblastoma protein and cell cycle control. Cell 81, 323–330 (1995).

    Article  CAS  Google Scholar 

  70. 70

    Debbas, M. & White, E. Wild-type p53 mediates apoptosis by E1A, which is inhibited by E1B. Genes Dev. 7, 546–554 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. 71

    Symonds, H. et al. p53-dependent apoptosis suppresses tumor growth and progression in vivo. Cell 78, 703–711 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. 72

    Morgenbesser, S. D., Williams, B. O., Jacks, T. & DePinho, R. A. p53-dependent apoptosis produced by Rb-deficiency in the developing mouse lens. Nature 371, 72–74 (1994).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  73. 73

    Kim, N. W. et al. Specific association of human telomerase activity with immortal cells and cancer. Science 266, 2011– 2015 (1994).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  74. 74

    Blasco, M. A., Rizen, M., Greider, C. W. & Hanahan, D. Differential regulation of telomerase activity and telomerase RNA during multi-stage tumorigenesis. Nature Genet. 12, 200– 204 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. 75

    Greenberg, R. A. et al. Short dysfunctional telomeres impair tumorigenesis in the INK4a(Δ2/3) cancer-prone mouse. Cell 97, 515–525 (1999).

    Article  CAS  Google Scholar 

  76. 76

    Hahn, W. C. et al. Creation of human tumour cells with defined genetic elements . Nature 400, 464–468 (1999).

    Article  ADS  CAS  Google Scholar 

  77. 77

    Chin, L. & DePinho, R. A. Flipping the oncogene switch: illumination of tumor maintenance and regression. Trends Genet. 16, 147–150 ( 2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. 78

    Chin, L. et al. Essential role for oncogenic RAS in tumour maintenance. Nature 400, 468–472 ( 1999).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  79. 79

    Pelengaris, S., Littlewood, T., Khan, M., Elia, G. & Evan, G. Reversible activation of c-Myc in skin: induction of a complex neoplastic phenotype by a single oncogenic lesion. Mol. Cell 3 , 565–577 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. 80

    Gelman, R., Watson, A., Bronson, R. & Yunis, E. Murine chromosomal regions correlated with longevity. Genetics 118, 693–704 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. 81

    Cunha, G. & Hom, Y. Role of mesenchymal-epithelial interactions in mammary gland development. J. Mamm. Gland Biol. Neoplasia 1, 21–35 (1996).

    Article  CAS  Google Scholar 

  82. 82

    Olumi, A. F. et al. Carcinoma-associated fibroblasts direct tumor progression of initiated human prostatic epithelium. Cancer Res. 59, 5002–5011 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. 83

    Dimri, G. P. et al. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc. Natl Acad. Sci. USA 92, 9363–9367 (1995).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  84. 84

    Shelton, D. N., Chang, E., Whittier, P. S., Choi, D. & Funk, W. D. Microarray analysis of replicative senescence. Curr. Biol. 9, 939– 945 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. 85

    Campisi, J. Aging and cancer: the double-edged sword of replicative senescence. J. Am. Geriatr. Soc. 45, 482–488 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. 86

    Serrano, M., Lin, A. W., McCurrach, M. E., Beach, D. & Lowe, S. W. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88, 593–602 ( 1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. 87

    Di Leonardo, A., Linke, S. P., Clarkin, K. & Wahl, G. M. DNA damage triggers a prolonged p53-dependent G1 arrest and long-term induction of Cip1 in normal human fibroblasts. Genes Dev. 8, 2540–2551 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. 88

    Coussens, L. M. et al. Inflammatory mast cells up-regulate angiogenesis during squamous epithelial carcinogenesis. Genes Dev. 13, 1382–1397 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. 89

    Bergers, G. et al. Matrix metalloprotein-9 triggers the angiogenic switch during carcinogenesis. Nature Cell Biol. 2, 737 –744 (2000).

    Article  CAS  Google Scholar 

  90. 90

    Coussens, L., Tinkle, C., Hanahan, D. & Werb, Z. MMP-9 supplied by bone marrow-derived cells contributes to skin carcinogenesis. Cell (in the press).

  91. 91

    Millis, A. J., Hoyle, M., McCue, H. M. & Martini, H. Differential expression of metalloproteinase and tissue inhibitor of metalloproteinase genes in aged human fibroblasts. Exp. Cell Res. 201, 373 –379 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. 92

    Sternlicht, M. D. et al. The stromal proteinase MMP3/stromelysin-1 promotes mammary carcinogenesis. Cell 98, 137– 146 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. 93

    Robertson, K. D. & Jones, P. A. DNA methylation: past, present and future directions. Carcinogenesis 21, 461–467 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. 94

    Piantanelli, L. Cancer and aging: from the kinetics of biological parameters to the kinetics of cancer incidence and mortality. Ann. NY Acad. Sci. 521, 99–109 (1988).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  95. 95

    Schwartz, R. A. Skin Cancer: Recognition and Management (Springer, New York, 1988).

Download references

Acknowledgements

I apologize to my colleagues whose relevant work I was unable to cite owing to space and reference limitations. I thank J. Vijg, D. Hanahan, J. Campisi, J.-P. Issa, N. Schreiber-Agus, G. Merlino, S. Mellis, L. Chin, S. Weiler and members of my laboratory for helpful discussions and critical comments. R.A.D. is supported by the National Institutes of Health and is an American Cancer Society Research Professor and a Steven and Michele Kirsch Foundation Investigator.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ronald A. DePinho.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

DePinho, R. The age of cancer. Nature 408, 248–254 (2000). https://doi.org/10.1038/35041694

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing