Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Spatial synchronization of vole population dynamics by predatory birds

Abstract

Northern vole populations exhibit large-scale, spatially synchronous population dynamics1,2. Such cases of population synchrony provide excellent opportunities for distinguishing between local intrinsic and regional extrinsic mechanisms of population regulation3. Analyses of large-scale survey data and theoretical modelling4,5,6 have indicated several plausible synchronizing mechanisms. It is difficult, however, to determine the most important one without detailed data on local demographic processes3,7. Here we combine results from two field studies in southeastern Norway—one identifies local demographic mechanisms and landscape-level annual synchrony among 28 enclosed experimental populations and the other examines region-level multi-annual synchrony in open natural populations. Despite fences eliminating predatory mammals and vole dispersal, the growth rates of the experimental populations were synchronized and moreover, perfectly linked with vole abundance in the region. The fates of 481 radio-marked voles showed that bird predation was the synchronizing mechanism. A higher frequency of risky dispersal movements in slowly growing populations appeared to accelerate predation rate. Thus, dispersal may induce a feedback-loop between predation and population growth that enhances synchrony.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Population development and predation rate of the experimental populations.
Figure 2: Negative density-dependent movement rates.
Figure 3: Evidence for regional multi-annual spatial synchrony.

Similar content being viewed by others

References

  1. Ranta, E. & Kaitala, V. Travelling waves in vole population dynamics. Nature 390, 456 ( 1997).

    Article  ADS  Google Scholar 

  2. Hansson, L. & Henttonen, H. Rodent dynamics as community processes. Trends Ecol. Evol. 3, 195– 200 (1988).

    Article  CAS  Google Scholar 

  3. Bjørnstad, O. N., Ims, R. A. & Lambin, X. Spatial population dynamics: analysing patterns and processes of population synchrony. Trends Ecol. Evol. 14, 427–432 (1999).

    Article  Google Scholar 

  4. Ranta, E., Kaitala, V. & Lundberg, V. P. The spatial dimension in population dynamics. Science 278, 1621–1623 ( 1997).

    Article  ADS  CAS  Google Scholar 

  5. Grenfell, B. T. et al. Noise and determinism in synchronized sheep dynamics. Nature 394, 674–677 ( 1998).

    Article  ADS  CAS  Google Scholar 

  6. Blasius, B., Huppert, A. & Stone, L. Complex dynamics and phase synchronization in spatially extended ecological systems. Nature 399, 354–359 (1999).

    Article  ADS  CAS  Google Scholar 

  7. May, R. M. Crash tests for the real. Nature 398, 371 –372 (1999).

    Article  ADS  CAS  Google Scholar 

  8. Steen, H., Ims, R. A. & Sonerud, G. A. Spatial and temporal patterns of small rodent population dynamics at a regional spatial scale. Ecology 77, 2365–2372 (1996).

    Article  Google Scholar 

  9. Bjørnstad, O. N., Stenseth, N. C. & Saitoh, T. Synchrony and scaling in dynamics of voles and mice in northern Japan. Ecology 80, 622– 637 (1999).

    Article  Google Scholar 

  10. Lambin, X. et al. Spatial asynchrony and periodic travelling wave in cyclic field vole populations. Proc. R. Soc. Lond. B 265, 1491–1496 (1998).

    Article  CAS  Google Scholar 

  11. Korpimäki, E. & Krebs, C. J. Predation and population cycles of small mammals. A reassessment of the predation hypothesis. BioScience 46, 754–764 (1996)

    Article  Google Scholar 

  12. Aars, J., Johannesen, E. & Ims, R. A. Demographic consequences of movements in subdivided root vole populations. Oikos 85, 204– 216 (1999).

    Article  Google Scholar 

  13. Steen, H. Low survival of long distance dispersers of the root vole (Microtus oeconomus ). Ann. Zool. Fennici 31, 271– 274 (1994).

    Google Scholar 

  14. Ims, R. A. & Andreassen, H. Effects of experimental habitat fragmentation and connectivity on root vole demography. J. Anim. Ecol. 68, 839–852 ( 1999).

    Article  Google Scholar 

  15. Andreassen, H. P. & Ims, R. A. The effect of experimental habitat destruction and patch isolation on space use and fitness parameters in female root vole Microtus oeconomus. J. Anim. Ecol. 67, 941–952 (1998).

    Article  CAS  Google Scholar 

  16. Clobert, J. et al. (eds) Causes and Consequences of Dispersal at the Individual, Population and Community Level (Oxford Univ. Press, in the press).

  17. Wolff, J. O. Population regulation in mammals: an evolutionary perspective. J. Anim. Ecol. 66, 1–13 (1997).

    Article  Google Scholar 

  18. Ims, R. A. & Steen, H. Geographic synchrony in microtine population cycles: a theoretical evaluation of the role of nomadic avian predators. Oikos 57, 381–387 (1990).

    Article  Google Scholar 

  19. Krebs, C. J. Population cycles visited. J. Mamm. 77, 8–24 (1996).

    Article  Google Scholar 

  20. Stenseth, N. C. & Ims, R. A. The Biology of Lemmings (Academic, London, 1993).

    Google Scholar 

  21. Hanski, I. et al. Population oscillation of boreal rodents: regulation by mustelid predators leads to chaos. Nature 364, 232 –235 (1993).

    Article  ADS  CAS  Google Scholar 

  22. Turchin, P. & Hanski, I. An empirically based model for latitudinal gradients in vole population dynamics. Am. Nat. 149 , 842–874 (1997).

    Article  CAS  Google Scholar 

  23. Heikkilä, J., Below, A. & Hanski, I. Synchronous dynamics of microtine rodent populations on islands in Lake Inari in northern fennoscandia: evidence for regulation by mustelid predators. Oikos 70, 245– 252 (1994).

    Article  Google Scholar 

  24. Korpimäki, E. & Norrdahl, K. Experimental reduction of predators reverses the crash phase sphase of small-rodent cycles. Ecology 79, 2448–2455 (1998).

    Article  Google Scholar 

  25. Viitala, J. et al. Attraction of kestrels to vole scent marks visible in ultraviolet-light. Nature 373, 425–427 (1995).

    Article  ADS  CAS  Google Scholar 

  26. Steen, H. Untangling the causes of dissappearance from a local population of root vole, Microtus oeconomus: a test of the regional synchrony hypothesis. Oikos 73, 65–72 ( 1995).

    Article  Google Scholar 

  27. Reid, D. G., Krebs, C. J. & Kenney, A. Limitation of collared lemming population-growth at low densities by predation mortalilty. Oikos 73, 387–398 (1995).

    Article  Google Scholar 

  28. Norrdahl, K. & Korpimäki, E. Mortality factors in a cyclic vole populations. Proc. R. Soc. Lond. B 261, 49–53 (1995).

    Article  ADS  CAS  Google Scholar 

  29. Johannesen, E., Andreassen, H. P. & Steen, H. C-J-S modelling revealed no effect of radio collars on survival of root voles. J. Mamm. 78, 638–642 (1996).

    Article  Google Scholar 

Download references

Acknowledgements

We thank all the people who helped us during the field work at Evenstad; and J. Aars, E. Johannesen, X. Lambin and H. Steen for comments on the manuscript. This study was supported by the Research Council of Norway.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rolf A. Ims.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ims, R., Andreassen, H. Spatial synchronization of vole population dynamics by predatory birds . Nature 408, 194–196 (2000). https://doi.org/10.1038/35041562

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35041562

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing