Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Mixing-layer distortion at the confluence of channels of different depth

Abstract

CHANNEL confluences have received considerable recent attention in the fields of geomorphology1–3, sedimentology4–9 and hydraulic engineering10–13. Where channels join, rapid changes in fluid velocity, turbulence intensity, channel hydraulic geometry and bed geometry may occur14–17. Previous models of junction dynamics have tended to assume that the confluent channels are of equal depth10,18, a condition that may be found only rarely in natural junctions; more often, the depths of confluent channels are different19. This discordance is commonly the result of the forma-tion, at the mouth of each confluent channel, of bars that possess steep avalanche faces which dip into a central junction scour1,2,5,20. Here we suggest that when channels of different depth join, the mixing layer that forms at their confluence is distorted by interacting with a separation zone which forms in the lee of the mouth of the shallower channel. This mixing-layer distortion imparts a complex three-dimensional flow to the junction, promoting vertical fluid upwelling and significantly enhancing rapid mixing within the flow of the shallow tributary, while retarding the rate of mixing across the flow of the deeper channel. Suspended sediments or contaminants within the deeper channel may be transferred rapidly across the flow of the shallower tributary, upwelling downstream of the junction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Mosley, M. P. J. Geol. 84, 535–562 (1976).

    Article  ADS  Google Scholar 

  2. Ashmore, P. E. & Parker, G. Water Resour. Res. 19, 342–402 (1983).

    Article  ADS  Google Scholar 

  3. Roy, A. G. & Bergeron, N. Geomorphology 3, 99–112 (1990).

    Article  ADS  Google Scholar 

  4. Klassen, G. J. & Vermeer, K. Proc. Int. Conf. Fluvial Hydraul. Budapest, 1–14 (1988).

  5. Best, J. L. Sedimentology 35, 481–498 (1988).

    Article  ADS  Google Scholar 

  6. Mosley, M. P. & Schumm, S. A. Econ. Geol. 72, 691–694 (1977).

    Article  Google Scholar 

  7. Reid, I., Best, J. L. & Frostick, L. E. in Floods: Hydrological, Sedimentological and Geomorphological Implications (eds Beven, K. & Carling, P.) 135–150 (Wiley, Chichester, 1989).

    Google Scholar 

  8. Bryant, I. D., Holyoak, D. T. & Mosely, K. A. Proc. Geol. Ass. 94(4), 321–343 (1983).

    Article  Google Scholar 

  9. Best, J. L. & Brayshaw, A. C. J. geol. Soc. Lond. 142, 747–755 (1985).

    Article  Google Scholar 

  10. Soong, H. K. thesis, Univ. Connecticut (1976).

  11. Hager, W. H. J. hydraul. Engng 115, 243–259 (1989).

    Article  Google Scholar 

  12. Sutherland, A. J. in Proc. 9th Aus. Fluid Mech. Conf. 259–263 (Univ. of Auckland, 1986).

    Google Scholar 

  13. Chu, V. H. & Babarutsi, S. J. hydraul. Engng 114, 1257–1274 (1988).

    Article  Google Scholar 

  14. Richards, K. S. Water Resour. Res. 16, 241–244 (1980).

    Article  ADS  Google Scholar 

  15. Best, J. L. & Reid, I. J. hydraul. Engng 110, 1588–1594 (1984).

    Article  Google Scholar 

  16. Roy, A. G. & Woldenberg, M. J. J. Geol. 94, 401–411 (1986).

    Article  ADS  Google Scholar 

  17. Roy, A. G. & Roy, R. Earth Surf. Proc. Landf. 13, 77–84 (1988).

    Article  ADS  Google Scholar 

  18. Best, J. L., Soc. Econ. Palaeontalogists and Mineralogists spec. Publ. 39, 27–35 (1987).

    Google Scholar 

  19. Kennedy, B. A. Earth Surf. Proc. Landf. 9, 153–173 (1984).

    Article  ADS  Google Scholar 

  20. Ashmore, P. E. Earth Surf. Proc. Landf. 7, 201–225 (1982).

    Article  ADS  Google Scholar 

  21. Winant, C. D. & Browand, F. K. J. Fluid Mech. 63, 237–255 (1974).

    Article  ADS  Google Scholar 

  22. Sternberg, H. O. The Amazon River of Brazil 74 (Steiner, Weisbader, 1975).

    Google Scholar 

  23. Roy, A. G. & De Serres, B. Bull. Soc. Géog. Liège 25, 113–127 (1989).

    Google Scholar 

  24. McGuirk, J. J. & Rodi, W. J. Fluid Mech. 86, 761–781 (1978).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Best, J., Roy, A. Mixing-layer distortion at the confluence of channels of different depth. Nature 350, 411–413 (1991). https://doi.org/10.1038/350411a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/350411a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing