Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Shifting baselines in attention research

Abstract

Psychophysical and physiological studies have shown that attending to a stimulus can enhance its sensory processing. Functional imaging studies now reveal that attention can also modulate activity in sensory brain areas before stimulus onset, when the observer prepares to attend to an anticipated stimulus. These preparatory `baseline shifts' in brain activity pose many new questions, and potentially offer new insights into the neural basis of perceptual awareness.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

References

  1. Broadbent, D. Perception and Communication (Pergamon, London, 1958 ).

    Book  Google Scholar 

  2. Kanwisher, N., & Wojciulik, E. Visual attention: Insights from brain imaging. Nature Rev. Neurosci. 1, 91–100 (2000).

    Article  CAS  Google Scholar 

  3. Chelazzi, L., Miller, E. K., Duncan, J., & Desimone, R. A neural basis for visual search in inferotemporal cortex. Nature 363, 345–347 ( 1993).

    Article  CAS  Google Scholar 

  4. Gandhi, S. P., Heeger, D. J. & Boynton, G. M. Spatial attention affects brain activity in human primary visual cortex. Proc. Natl Acad. Sci. USA 96 , 3314–3319 (1999).

    Article  CAS  Google Scholar 

  5. Martinez, A. et al. Involvement of striate and extrastriate visual cortical areas in spatial attention. Nature Neurosci. 2, 364–369 (1999).

    Article  CAS  Google Scholar 

  6. Monsell, S. & Driver, J. (eds) Control of Cognitive Processes (MIT Press, Cambridge, Massachusetts, 2000).

    Google Scholar 

  7. Corbetta, M., Kincade, J. M., Ollinger, J. M., McAvoy, M. P. & Shulman, G. L. Voluntary orienting is dissociated from target detection in human posterior parietal cortex. Nature Neurosci. 3, 292–297 ( 2000).

    Article  CAS  Google Scholar 

  8. Hopfinger, J. B., Buonocore, M. H. & Mangun, G. R. The neural mechanisms of top-down attentional control . Nature Neurosci. 3, 284– 291 (2000).

    Article  CAS  Google Scholar 

  9. Miller, E. K. in Control of Cognitive Processes (eds Monsell, S. & Driver, J.) 511–534 (MIT Press, Cambridge, Massachusetts, 2000).

    Google Scholar 

  10. Hopfinger, J. B., Jha, A. P., Hopf. J.-M., Girelli, M. & Mangun, G. R. in Control of Cognitive Processes (eds Monsell, S. & Driver, J.) 125–154 (MIT Press, Cambridge, Massachusetts, 2000).

    Google Scholar 

  11. Chawla, D., Rees, G. & Friston, K. J. The physiological basis of attentional modulation in extrastriate visual areas. Nature Neurosci. 2, 671–676 (1999).

    Article  CAS  Google Scholar 

  12. Zeki, S. A vision of the brain (Blackwell, Oxford, 1993).

    Google Scholar 

  13. Shulman, G. L. et al. Areas involved in encoding and applying directional expectations to moving objects. J. Neurosci. 19, 9480 –9496 (1999).

    Article  CAS  Google Scholar 

  14. Kastner, S., Pinsk, M., De Weerd, P., Desimone, R. & Ungerleider, L. Increased activity in human visual cortex during directed attention in the absence of visual stimulation. Neuron 22, 751–761 (1999).

    Article  CAS  Google Scholar 

  15. Ress, D., Backus, B. & Heeger, D. Activity in primary visual cortex predicts performance in a visual detection task. Nature Neurosci. (in the press).

  16. Pinsk, M. A., Kastner, S., Desimone, R. & Ungerleider, L. G. Expectation of color or face stimuli differentially modulates activity in human visual cortex. Soc. Neurosci. Abstr. (in the press).

  17. Drevets, W. C. et al. Blood flow changes in human somatosensory cortex during anticipated stimulation. Nature 373, 249– 252 (1995).

    Article  CAS  Google Scholar 

  18. Corbetta, M. et al. Attentional modulation of neural processing of shape, color, and velocity in humans. Science 248, 1556 –1559 (1990).

    Article  CAS  Google Scholar 

  19. Rees, G., Frackowiak, R. S. G. & Frith, C. Two modulatory effects of attention that mediate object categorisation in human cortex. Science 275, 835–838 (1997).

    Article  CAS  Google Scholar 

  20. Kosslyn, S. M. Image and brain (MIT Press, Cambridge, Massachusetts, 1994).

    Google Scholar 

  21. Kosslyn, S. M. et al. The role of area 17 in visual imagery: Convergent evidence from PET and rTMS. Science 284, 167– 170 (1999).

    Article  CAS  Google Scholar 

  22. O'Craven, K. & Kanwisher, N. Mental imagery of faces and places activates corresponding stimulus-specific brain regions. J. Cogn. Neurosci. (in the press).

  23. Duncan, J. & Humphreys, G. W. Visual Search and stimulus similarity. Psychol. Rev. 96, 433– 458 (1989).

    Article  CAS  Google Scholar 

  24. Jeannerod, M. The representing brain: neural correlates of motor intention and imagery. Behav. Brain Sci. 17, 187–202 (1994).

    Article  Google Scholar 

  25. Logothetis, N. K. Single units and conscious vision. Proc. R. Soc. London B 353, 1801–1818 (1998).

    CAS  Google Scholar 

  26. Milner, A. D. & Goodale, M. A. The Visual Brain in Action (Oxford Univ. Press, Oxford, 1995).

    Google Scholar 

  27. Frith, C. D., Perry, R. & Lumer, E. The neural correlates of conscious experience: an experimental framework. Trends Cogn. Sci. 3, 105– 114 (1999).

    Article  CAS  Google Scholar 

  28. Blakemore, S-J., Wolpert, D. M. & Frith, C. D. Central cancellation of self-produced tickle sensation . Nature Neurosci. 1, 635– 640 (1998).

    Article  CAS  Google Scholar 

  29. Holst, E. & von Mittelstaedt, H. Das reafferenzprincipal wechselwirkungen zwischen zentralnervensystem und periferie. Naturwissenschaft 37, 464–476 ( 1950).

    Article  Google Scholar 

  30. Frith, C. D., Blakemore, S.-J. & Wolpert, D. M. Explaining the symptoms of schizophrenia: Abnormalities in the awareness of action. Brain Res. Brain Res. Rev. 31, 357–363 (1999).

    Article  Google Scholar 

  31. Cahill, C., Silbesweig, D. & Frith, C. D. Psychotic experiences induced in deluded patients using distorted auditory feedback. Cogn. Neuropsychiatry 1, 201–211 (1996).

    Article  CAS  Google Scholar 

  32. Luck S. J., Chelazzi, L., Hillyard, S. A. & Desimone, R. Neural mechanisms of spatial selective attention in areas V1, V2, and V4 of macaque visual cortex. J. Neurophysiol. 77, 24–42 (1997).

    Article  CAS  Google Scholar 

  33. Goldman-Rakic, P. S. Architecture of the prefrontal cortex and the central executive. Ann. NY Acad. Sci. 769, 71–83 (1996).

    Article  Google Scholar 

Download references

Acknowledgements

John Driver's research is supported by a Medical Research Council (UK) grant. Chris Frith is supported by the Wellcome Trust.

Author information

Authors and Affiliations

Authors

Related links

Related links

FURTHER INFORMATION

National Institute of Mental Health: Schizophrenia

Institute of Cognitive Neuroscience, University College London

Chris Frith's homepage

ENCYCLOPEDIA OF LIFE SCIENCES

Brain imaging: localization of function

Hallucinogenic drugs

Schizophrenia

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Driver, J., Frith, C. Shifting baselines in attention research. Nat Rev Neurosci 1, 147–148 (2000). https://doi.org/10.1038/35039083

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35039083

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing