Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Hayflick, his limit, and cellular ageing

Abstract

Almost 40 years ago, Leonard Hayflick discovered that cultured normal human cells have limited capacity to divide, after which they become senescent — a phenomenon now known as the ‘Hayflick limit’. Hayflick's findings were strongly challenged at the time, and continue to be questioned in a few circles, but his achievements have enabled others to make considerable progress towards understanding and manipulating the molecular mechanisms of ageing.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Leonard Hayflick in 1988.
Figure 2: Young and old human diploid cells (strain WI-38).
Figure 3: Hayflick's three phases of cell culture.
Figure 4: The end-replication problem.

References

  1. Weismann, A. Collected Essays upon Heredity and Kindred Biological Problems (ed. Poulton, E. B.) (Clarendon, Oxford, 1889).

    Google Scholar 

  2. Carrel, A. & Ebeling, A. H. Age and multiplication of fibroblasts . J. Exp. Med. 34, 599– 606 (1921).

    Article  CAS  Google Scholar 

  3. Hayflick, L. & Moorhead, P. S. The serial cultivation of human diploid cell strains. Exp. Cell Res. 25, 585–621 (1961).

    Article  CAS  Google Scholar 

  4. Hayflick, L. The limited in vitro lifetime of human diploid cell strains. Exp. Cell Res. 37, 614–636 (1965).

    Article  CAS  Google Scholar 

  5. Witkowski, J. A. Dr. Carrel's immortal cells. Med. Hist. 24, 129–142 (1980).

    Article  CAS  Google Scholar 

  6. Witkowski, J. A. The myth of cell immortality. Trends Biochem. Sci. 10, 258–260 (1985).

    Article  Google Scholar 

  7. Rubin, H. Telomerase and cellular lifespan: ending the debate? Nature Biotechnol. 16, 396–397 ( 1998).

    Article  CAS  Google Scholar 

  8. Burnett, M. Intrinsic Mutagenesis (Medical and Technical Publishing Co., Lancaster, 1974).

    Book  Google Scholar 

  9. Garfield, E. Current Comments. Curr. Contents 15, 5– 8 (1983).

    Google Scholar 

  10. Hayflick, L. The coming of age of WI-38. Adv. Cell Cult. 3, 303–316 (1984).

    Article  Google Scholar 

  11. Hayflick, L. How and why we age. Exp. Gerontol. 33, 639 –653 (1998).

    Article  CAS  Google Scholar 

  12. Wright, W. E. & Hayflick, L. Nuclear control of cellular ageing demonstrated by hybridization of anucleate and whole cultured normal human fibroblasts. Exp. Cell Res. 96, 113– 121 (1975).

    Article  CAS  Google Scholar 

  13. Watson, J. D. Origin of concatemeric T7 DNA. Nature New Biol. 239 , 197–201 (1972).

    Article  CAS  Google Scholar 

  14. Olovnikov, A. M. Telomeres, telomerase and aging: Origin of the theory. Exp. Gerontol. 31, 443–448 ( 1996).

    Article  CAS  Google Scholar 

  15. Olovnikov, A. M. Principles of marginotomy in template synthesis of polynucleotides. Dokl. Akad. Nauk S.S.S.R. 201, 1496– 1499 (1971).

    CAS  Google Scholar 

  16. Olovnikov, A. M. A theory of marginotomy: The incomplete copying of template margin in enzyme synthesis of polynucleotides and biological significance of the problem. J. Theor. Biol. 41, 181–190 (1973).

    Article  CAS  Google Scholar 

  17. Muller, H. J. in Studies of Genetics: The Selected Papers of H. J. Muller 384– 408 (Indiana Univ. Press, Bloomington, 1962).

    Google Scholar 

  18. McClintock, B. The stability of broken ends of chromosomes in Zea mays. Genetics 26, 234–282 ( 1941).

    CAS  Google Scholar 

  19. Blackburn, E. H. & Gall, J. G. A tandemly repeated sequence at the termini of the extrachromosomal ribosomal RNA genes in Tetrahymena. J. Mol. Biol. 120, 33– 53 (1978).

    Article  CAS  Google Scholar 

  20. Moyzis, R. K. et al. A highly conserved repetitive DNA sequence (TTAGGG)n, present at the telomeres of human chromosomes. Proc. Natl Acad. Sci. USA 85, 6622–6626 ( 1988).

    Article  CAS  Google Scholar 

  21. Cooke, H. J. & Smith, B. A. Variability at the telomeres of human X/Y pseudoautosomal regions. Cold Spring Harb. Symp. Quant. Biol. 51, 213–219 ( 1986).

    Article  CAS  Google Scholar 

  22. Harley, C. B., Futcher, A. B. & Greider, C. W. Telomeres shorten during ageing of human fibroblasts . Nature 345, 458–460 (1990).

    Article  CAS  Google Scholar 

  23. Hastie, N. D. et al. Telomere reduction in human colorectal carcinoma and with ageing. Nature 346, 866– 868 (1990).

    Article  CAS  Google Scholar 

  24. DeLange, T. et al. Structure and variability of human chromosome ends. Mol. Cell Biol. 10, 518–527 (1990).

    Article  CAS  Google Scholar 

  25. Lindsey, J., McGill, N. I., LinDsey, L. A., Green, D. K. & Cooke, H. J. In vivo loss of telomere repeats with age in humans. Mutat. Res. 256, 45–48 (1991).

    Article  CAS  Google Scholar 

  26. Greider, C. W. & Blackburn, E. H. Identification of a specific telomere terminal transferase enzyme with two kinds of primer specificity. Cell 51, 405– 413 (1985).

    Article  Google Scholar 

  27. Morin, G. B. The human telomere terminal transferase enzyme is a ribonucleoprotein that synthesizes TTAGGG repeats. Cell 59, 521 –529 (1989).

    Article  CAS  Google Scholar 

  28. Kim, N.-W. et al. Specific association of human telomerase activity with immortal cells and cancer. Science 266, 2011– 2015 (1994).

    Article  CAS  Google Scholar 

  29. Feng, F. et al. The RNA component of human telomerase. Science 269, 1236–1241 (1995).

    Article  CAS  Google Scholar 

  30. Nakamura, T. M. et al. Telomerase catalytic subunit homologs from fission yeast and humans. Science 277, 955– 959 (1997).

    Article  CAS  Google Scholar 

  31. Bodnar, A. G. et al. Extension of life span by introduction of telomerase into normal human cells. Science 279, 349– 352 (1998).

    Article  CAS  Google Scholar 

  32. Shay, J. W. & Wright, W. E. The use of telomerized cells for tissue engineering. Nature Biotechnol. 18, 22–23 (2000).

    Article  CAS  Google Scholar 

  33. Shay, J. W. & Gazdar, A. F. Telomerase in the early detection of cancer. J. Clin. Path. 50, 106– 109 (1997).

    Article  CAS  Google Scholar 

  34. Herbert, B.-S. et al. Inhibition of telomerase leads to eroded telomeres, reduced proliferation, and apoptosis. Proc. Natl Acad. Sci. USA 96, 14276–14281 (1999).

    Article  CAS  Google Scholar 

  35. Dimri, G. P. et al. A biomarker that identifies senescent human cells in culture and in ageing skin in vivo. Proc. Natl Acad. Sci. USA 92, 9363–9367 (1995).

    Article  CAS  Google Scholar 

  36. Shay, J. W. & Wright, W. E. in Ageing Vulnerability: Causes and Interventions (Novartis Foundation Proceedings, in the press).

  37. Hayflick, L. A brief overview of the discovery of cell mortality and immortality and of its influence on concepts about ageing and cancer. Pathol. Biol. 47, 1094–1104 ( 1999).

    CAS  Google Scholar 

  38. Wright, W. E. & Shay, J. W. Telomere dynamics in cancer progression and prevention: Fundamental differences in human and mouse telomere biology . Nature Med. 6, 849–851 (2000).

    Article  CAS  Google Scholar 

  39. Hayflick, L. The biology of human aging. Am. J. Med. Sci. 265, 433–445 (1973).

    Article  Google Scholar 

  40. Namba, M. et al. in Monograph on Cancer Research Vol. 27, 221–230 (Tokyo Univ. Press, Tokyo, 1981).

    Google Scholar 

  41. Shiels, P. G. et al. Analysis of telomere lengths in cloned sheep. Nature 399, 316–317 ( 1999).

    Article  CAS  Google Scholar 

  42. Lanza, R. P. et al. Extension of cell life-span and telomere length in animals cloned from senescent somatic cells. Science 88, 665–669 (2000).

    Article  Google Scholar 

  43. Shay, J. W. Telomerase in cancer — diagnostic, prognostic and therapeutic implications . Sci. Am. 4, S26–S34 (1998).

    Google Scholar 

  44. Hayflick, L., Plotkin, S. A., Norton, T. W. & Koprowski, H. Preparation of poliovirus vaccines in a human fetal diploid cell strain. Am. J. Hyg. 75, 240–258 (1962).

    CAS  Google Scholar 

  45. Hayflick, L., Moorhead, P., Pomerat, C. M. & Hsu, T. C. Choice of a cell system for vaccine production. Science 140, 760–763 (1963).

    Google Scholar 

  46. Fletcher, M. A., Hessel, L. & Plotkin, S. A. in Developments in Biological Standardization Vol. 93, 97–107 (Basel, Kargert, 1998).

    Google Scholar 

  47. Chanock, R. M., Hayflick, L. & Barille, M. F. Growth on artificial medium of an agent associated with atypical pneumonia and its identification as a PPLO. Proc. Natl Acad. Sci. USA 48, 41–49 (1962).

    Article  CAS  Google Scholar 

  48. Hayflick, L. Tissue cultures and mycoplasmas. Texas Rep. Biol. Med. 23, 285–303 (1965).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerry W. Shay.

Related links

Related links

ENCYCLOPEDIA OF LIFE SCIENCES

Ageing

Cell senesence in vitro

FURTHER INFORMATION

Jerry Shay's homepage

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shay, J., Wright, W. Hayflick, his limit, and cellular ageing. Nat Rev Mol Cell Biol 1, 72–76 (2000). https://doi.org/10.1038/35036093

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35036093

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing