Letter | Published:

The genome sequence of the thermoacidophilic scavenger Thermoplasma acidophilum

Nature volume 407, pages 508513 (28 September 2000) | Download Citation

Subjects

Abstract

Thermoplasma acidophilum is a thermoacidophilic archaeon that thrives at 59 °C and pH 2, which was isolated from self-heating coal refuse piles and solfatara fields1,2. Species of the genus Thermoplasma do not possess a rigid cell wall, but are only delimited by a plasma membrane. Many macromolecular assemblies from Thermoplasma , primarily proteases and chaperones, have been pivotal in elucidating the structure and function of their more complex eukaryotic homologues3,4. Our interest in protein folding and degradation led us to seek a more complete representation of the proteins involved in these pathways by determining the genome sequence of the organism. Here we have sequenced the 1,564,905-base-pair genome in just 7,855 sequencing reactions by using a new strategy. The 1,509 open reading frames identify Thermoplasma as a typical euryarchaeon with a substantial complement of bacteria-related genes; however, evidence indicates that there has been much lateral gene transfer between Thermoplasma and Sulfolobus solfataricus, a phylogenetically distant crenarchaeon inhabiting the same environment. At least 252 open reading frames, including a complete protein degradation pathway and various transport proteins, resemble Sulfolobus proteins most closely.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    , , & A thermophilic acidophilic mycoplasm isolated from a coal refuse pile. Science 170, 1416–1418 ( 1970).

  2. 2.

    & in The Prokaryotes (eds Balows, A., Trüper, H. G., Dworkin, M., Harder, W. & Schleifer, K. H.) 712–718 (Springer, New York, 1992).

  3. 3.

    , & Group II chaperonins: New TRiC(k)s and Turns of a Protein Folding Machine. J. Mol. Biol. 293, 295– 312 (1999).

  4. 4.

    , & The 26S proteasome: A molecular machine designed for controlled proteolysis. Annu. Rev. Biochem. 68, 1015–1068 (1999).

  5. 5.

    et al. Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269, 496– 512 (1995).

  6. 6.

    et al. Complete sequence analysis of the genome of the bacterium Mycoplasma pneumoniae. Nucleic Acids Res. 24, 4420–4449 (1996).

  7. 7.

    , & The plasmids found in isolates of the acidothermophilic archaebacterium Thermoplasma acidophilum. FEMS Microbiol. Lett. 128, 157–161 ( 1995).

  8. 8.

    , , & Identification of putative chromosomal origins of replication in Archaea. Mol. Microbiol. 32, 881– 891 (1999).

  9. 9.

    & Organization and expression of the 16S, 23S and 5S ribosomal RNA genes from the archaebacterium Thermoplasma acidophilum. Nucleic Acids Res. 18, 4471–4478 (1990).

  10. 10.

    & Metabolism of glucose via a modified Entner–Doudoroff pathway in the thermoacidophilic archaebacterium Thermoplasma acidophilum. FEBS Lett. 196, 207–210 (1986).

  11. 11.

    & Thermoplasma acidophilum: Glucose degradative pathways and respiratory activities. Syst. Appl. Microbiol. 5, 30–40 (1984).

  12. 12.

    Cytochromes of archaeal electron transfer chains. Biochim. Biophys. Acta 1229, 1–22 ( 1995).

  13. 13.

    et al. The complete genome sequence of the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus. Nature 390, 364–370 (1997).

  14. 14.

    & Sequence Analysis and Expression of the Salmonella typhimurium asr Operon Encoding Production of Hydrogen Sulfide from Sulfite. J. Bacteriol. 173, 1544–1553 (1991).

  15. 15.

    & Chemotaxis and phototaxis require a CheA histidine kinase in the archaeon Halobacterium salinarium. EMBO J. 14, 667–673 ( 1995).

  16. 16.

    . et al. The solution structure of VAT-N reveals a ‘missing link’ in the evolution of complex enzymes from a simple beta alpha beta beta element. Curr. Biol. 9, 1158–1168 (1999).

  17. 17.

    , , , & The janus face of the archaeal Cdc48/p97 homologue VAT: Protein folding versus unfolding. Biol. Chem. 380, 1049–1062 (1999).

  18. 18.

    , , & Self-compartmentalizing proteases. Trends Biochem. Sci. 22, 399–404 (1997).

  19. 19.

    , , , & An archaebacterial ATPase, homologous to ATPases in the eukaryotic 26 S proteasome, activates protein breakdown by 20 S proteasomes. J. Biol. Chem. 274, 26008– 26014 (1999).

  20. 20.

    , , & The role of Tricorn protease and its aminopeptidase-interacting factors in cellular protein degradation. Cell 95, 637 –648 (1998).

  21. 21.

    , & Ubiquitin found in the archaebacterium Thermoplasma acidophilum. FEBS Lett. 326, 42– 44 (1993).

  22. 22.

    , & Handbook of proteolytic enzymes (Academic, San Diego, CA, 1999).

  23. 23.

    et al. An atypical topoisomerase II from archaea with implications for meiotic recombination. Nature 386, 414 –417 (1997).

  24. 24.

    & Physiologically important stabilization of DNA by a prokaryotic histone-like protein. Science 202, 219–221 (1978).

  25. 25.

    & Cytoskeleton in the archaebacterium Thermoplasma acidophilum? Viscosity increase in soluble extracts. BioSystems 29, 151–160 ( 1993).

  26. 26.

    , & Polypeptide nature of growth requirement in yeast extract for Thermoplasma acidophilum. J. Bacteriol. 124, 884–892 (1975).

  27. 27.

    , , & Combining diverse evidence for gene recognition in completely sequenced bacterial genomes. Nucleic Acids Res. 26, 2941– 2947 (1998).

  28. 28.

    & PEDANTic genome analysis. Trends Genet. 13, 415–416 (1997).

  29. 29.

    et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997).

  30. 30.

    , , & Fold recognition using sequence and secondary structure information. Proteins Struct. Funct. Genet. 37, 141– 148 (1999).

Download references

Acknowledgements

We thank P. Forterre and P. Lopez for helping to define the origin of replication; M. Boicu and C. Czoppelt for sequencing; G. Mannhaupt for annotating part of the ORFs; I. Echabe for preparing template DNA and sequencing; and B. Marshall for developing software for gene cluster analysis and for data management.

Author information

Affiliations

  1. *Max-Planck-Institut für Biochemie , Am Klopferspitz 18a, D-82152 Martinsried , Germany

    • Andreas Ruepp
    • , Werner Graml
    • , Martha-Leticia Santos-Martinez
    •  & Wolfgang Baumeister
  2. †Bioinformatics, Smith Kline Beecham Pharmaceuticals, Collegeville, Pennsylvania 19426, USA

    • Kristin K. Koretke
    • , Craig Volker
    •  & Andrei N. Lupas
  3. ‡GSF-Forschungszentrum für Umwelt und Gesundheit, Munich Information Center for Protein Sequences, Am Klopferspitz 18a, D-82152 Martinsried, Germany

    • H. Werner Mewes
    • , Dmitrij Frishman
    •  & Susanne Stocker

Authors

  1. Search for Andreas Ruepp in:

  2. Search for Werner Graml in:

  3. Search for Martha-Leticia Santos-Martinez in:

  4. Search for Kristin K. Koretke in:

  5. Search for Craig Volker in:

  6. Search for H. Werner Mewes in:

  7. Search for Dmitrij Frishman in:

  8. Search for Susanne Stocker in:

  9. Search for Andrei N. Lupas in:

  10. Search for Wolfgang Baumeister in:

Corresponding author

Correspondence to Wolfgang Baumeister.

Supplementary information

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/35035069

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.