Quantal analysis of excitatory synaptic action and depression in hippocampal slices

Article metrics

Abstract

QUANTAL analysis can provide a quantitative description of important aspects of chemical synaptic transmission and its modification1–3. The technique has recently been applied to excita-tory synapses within the hippocampus4–10, especially the form of synaptic plasticity known as long-term potentiation11–13. However, these attempts have met with only limited success, in that the individual quantal amplitudes making up the synaptic response generally could not be resolved. Here we have paid attention to the possible instability of the quantal fluctuation pattern over time. We were able to resolve individual quantal component amplitudes for a high proportion of the experiments, and so demonstrate the quantal nature of excitatory transmission in the CA1 region of the hippocampus. Mean quantal amplitudes for individual excita-tory postsynaptic potentials were 84–197 μV, with a mean of 131 ± 29 μV. For periods during which the fluctuation pattern was stable, the variance associated with individual quantal amplitudes was low. We have also used quantal analysis to show that synaptic depression following prolonged stimulation at these synapses is primarily a presynaptic phenomenon.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    del Castillo, J. & Katz, B. J. Physlol., Lond. 124, 560–573 (1954).

  2. 2

    Martin, A. R. in Handbook of Physiology. (1) The Nervous System (ed. Kandel, E. R.) 329–355 (Am. Physiol. Soc., Bethesda, 1977).

  3. 3

    Redman, S. Physiol. Rev. 70, 165–198 (1990).

  4. 4

    Yamamoto, C. Expl Brain Res. 46, 170–176 (1982).

  5. 5

    Hess, G., Kuhnt, U. & Voronin, L. L. Neurosci. Lett. 77, 187–192 (1987).

  6. 6

    Sayer, R. J., Redman, S. J. & Anderson, P. J. Neurosci. 9, 840–850 (1989).

  7. 7

    Sayer, R. J., Friedlander, M. J. & Redman, S. J. J. Neurosci. 10, 826–836 (1990).

  8. 8

    Malinow, R. & Tsien, R. W. Nature 346, 177–180 (1990).

  9. 9

    Bekkers, J. M. & Stevens, C. F. Nature 341, 230–233 (1989).

  10. 10

    Bekkers, J. M. & Stevens, C. F. Nature 346, 724–729 (1990).

  11. 11

    Nicoll, R. A., Kauer, J. A. & Malenka, R. C. Neuron 1, 97–103 (1988).

  12. 12

    Kennedy, M. B. Cell 59, 777–787 (1989).

  13. 13

    Friedlander, M. J., Sayer, R. J. & Redman, S. J. J. Neurosci. 10, 814–825 (1990).

  14. 14

    Kullmann, D. M. J. Neurosci. Meth. 30, 231–245 (1989).

  15. 15

    Schwartzkroin, P. A. & Mueller, A. L. in Cerebral Cortex Vol. 6 (eds Jones, E. G. & Peters, A.) 295–343 (Plenum, New York, 1987).

  16. 16

    Riveros, N., Fiedler, J., Lagos, N., Munoz, C. & Orrego, F. Brain Res. 386, 405–408 (1986).

  17. 17

    Villanueva, S., Fiedler, J. & Orrego, F. Neuroscience 37, 23–30 (1990).

  18. 18

    Tang, C.-M., Dichter, D. & Morad, M. Science 243, 1474–1477 (1989).

  19. 19

    Trussell, L. O. & Fischbach, G. D. Neuron 3, 209–218 (1989).

  20. 20

    Bekkers, J. M., Richerson, G. B. & Stevens, C. F. Proc. natn. Acad. Sci. U.S.A. 87, 5359–5362 (1990).

  21. 21

    Edwards, F. A., Konnerth, A. & Sakmann, B. J. Physiol., Lond. 430, 213–249 (1990).

  22. 22

    Bennett, M. R. & Lavidis, N. A. J. Physiol., Lond. 418, 219–233 (1989).

  23. 23

    Jack, J. J. B., Redman, S. J. & Wong, K. J. Physiol., Lond. 321, 65–96 (1981).

  24. 24

    Walmsley, B., Edwards, F. R. & Tracey, D. J. J. Neurosci. 7, 1037–1046 (1987).

  25. 25

    Walmsley, B., Edwards, F. R. & Tracey, D. J. J. Neurophysiol. 60, 889–908 (1988).

  26. 26

    del Castillo, J. & Katz, B. J. Physiol. 124, 574–585 (1954).

  27. 27

    Magleby, K. L. in Synaptic Function (eds Edelman, G. M., Gall, W. E. & Cowan, W. M.) 21–56 (Wiley, New York, 1987).

  28. 28

    Thies, R. E. J. Neurophysiol. 28, 427–442 (1965).

  29. 29

    Korn, H., Faber, D. S., Burnod, Y. & Triller, A. J. Neurosci. 4, 125–130 (1984).

  30. 30

    Sarantis, M. & Attwell, D. Brain Res. 516, 322–325 (1990).

  31. 31

    Jack, J. J. B., Kullmann, D. M., Larkman, A. U., Major, G. & Stratford, K. J. Cold Spring Harb. Symp. quant. Biol. (in the press).

  32. 32

    Rahamimoff, R. & Yaari, Y. J. Physiol., Lond. 228, 241–257 (1973).

  33. 33

    Malenka, R. C., Kauer, J. A., Zucker, R. S. & Nicoll, R. A. Science 242, 81–84 (1988).

  34. 34

    Titterington, D. M., Smith, A. F. M. & Makov, U. E. in Statistical Analysis of Finite Mixture Distributions, 52–147 (Wiley, Chichester, 1985).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Larkman, A., Stratford, K. & Jack, J. Quantal analysis of excitatory synaptic action and depression in hippocampal slices. Nature 350, 344–347 (1991) doi:10.1038/350344a0

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.