Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Interdecadal oscillations and the warming trend in global temperature time series

Abstract

THE ability to distinguish a warming trend from natural variability is critical for an understanding of the climatic response to increasing greenhouse-gas concentrations. Here we use singular spectrum analysis1 to analyse the time series of global surface air tem-peratures for the past 135 years2, allowing a secular warming trend and a small number of oscillatory modes to be separated from the noise. The trend is flat until 1910, with an increase of 0.4 °C since then. The oscillations exhibit interdecadal periods of 21 and 16 years, and interannual periods of 6 and 5 years. The interannual oscillations are probably related to global aspects of the El Niño-Southern Oscillation (ENSO) phenomenon3. The interdecadal oscillations could be associated with changes in the extratropical ocean circulation4. The oscillatory components have combined (peak-to-peak) amplitudes of >0.2 °C, and therefore limit our ability to predict whether the inferred secular warming trend of 0.005 °Cyr−1 will continue. This could postpone incontrovertible detection of the greenhouse warming signal for one or two decades.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Vautard, R. & Ghil, M. Physica D35, 395–424 (1989).

    MathSciNet  Google Scholar 

  2. 2

    Jones, P. D., Wigley, T. M. L. & Wright, P. B. Nature 322, 430–434 (1986).

    ADS  Article  Google Scholar 

  3. 3

    Rasmusson, E. M., Wang, X.-L. & Ropelewski, C. F. J. mar. Sys. 1, 71–96 (1990).

    Article  Google Scholar 

  4. 4

    Bjerknes, J. Adv. Geophys. 10, 1–82 (1964).

    ADS  Article  Google Scholar 

  5. 5

    Folland, C. K., Parker, D. E. & Kates, F. E. Nature 310, 670–673 (1984).

    ADS  Article  Google Scholar 

  6. 6

    Hansen, J. & Lebedeff S. J. geophys. Res. 92, 13345–13372 (1987).

    ADS  Article  Google Scholar 

  7. 7

    Karl, T. R. Clim. Change 12, 179–197 (1988).

    ADS  Article  Google Scholar 

  8. 8

    Jones, P. D. et al. J. Clim. appl. Met. 25, 1213–1230 (1986).

    Article  Google Scholar 

  9. 9

    Bottomley, M., Folland, C. K., Hsiung, J., Newell, R. E. & Parker, D. E. Global Ocean Surface Temperature Atlas (HMSO- UK Meteorological Office and Massachusetts Institute of Technology, 1990).

    Google Scholar 

  10. 10

    Houghton, J. T., Jenkins, G. J. & Ephraums, J. T. (eds), Climate Change, the IPCC Scientific Assessment (Cambridge University Press, 1990).

  11. 11

    Kuo, C., Lindberg, C. & Thomson, D. J. Nature 343, 709–713 (1990).

    ADS  CAS  Article  Google Scholar 

  12. 12

    Slepian, D. Bell System tech. J. 57, 1371–1429 (1978).

    Article  Google Scholar 

  13. 13

    Thomson, D. J. Proc. IEEE 70, 1055–1096 (1982).

    ADS  Article  Google Scholar 

  14. 14

    Park, J., Lindberg, C. R. & Vernon, F. L. III J. geophys. Res. 92, 12675–12684 (1987).

    ADS  Article  Google Scholar 

  15. 15

    Yiou, P. et al. in Interaction of the Global Carbon and Climate Systems (eds W. H. Berger & R. Keir) 28, 1–22 (Electric Power Res. Inst., Palo Alto, 1989).

    Google Scholar 

  16. 16

    Broomhead, D. S. & King, G. P. Physica D20, 217–236 (1986).

    MathSciNet  Google Scholar 

  17. 17

    Fraedrich, K. J. atmos. Sci. 43, 419–432 (1986).

    ADS  MathSciNet  Article  Google Scholar 

  18. 18

    Barnett, T. P. & Preisendorfer, R. W. J. atmos. Sci. 35, 1771–1787 (1978).

    ADS  Article  Google Scholar 

  19. 19

    Ghil, M. & Mo, K. C. J. atmos. Sci. 48, 752–790 (1991).

    ADS  Article  Google Scholar 

  20. 20

    Folland, C. K. Met. Mag. 112, 163–183 (1983).

    Google Scholar 

  21. 21

    Newell, N. E., Newell, R. E., Hsiung, J. & Wu, Z.-X. Geophys. Res. Lett. 16, 311–314 (1989).

    ADS  Article  Google Scholar 

  22. 22

    Cornish, E. A. Q. J. & R. met. Soc. 62, 481–492 (1936).

    ADS  Article  Google Scholar 

  23. 23

    Keppenne, C. L. & Ghil, M. in Proc. 15th Climate Diagnostics Workshop, Climate Analysis Center, National Meteorological Centre/National Oceanic and Atmospheric Administration (in the press).

  24. 24

    Penland, C., Ghil, M. & Weickmann, K. M. J. geophys. Res. (in the press).

  25. 25

    Jones, P. D., Wigley, T. M. L., Folland, C. K. & Parker, D. E. Clim. Monit. 175–185 (1987).

  26. 26

    Cane, M. A., Zebiak, S. E. & Dolan, S. C. Nature 321, 827–832 (1986).

    ADS  Article  Google Scholar 

  27. 27

    Rasmusson, E. M. Am. Scient. 73, 168–177 (1985).

    ADS  Google Scholar 

  28. 28

    Ghil, M. The Sun in Time (eds C. P. Sonett & M. S. Giampapa), Univ. of Arizona Press (in the press).

  29. 29

    Levitus, S. J. geophys. Res. C94, 6091–6131 (1989).

    ADS  Article  Google Scholar 

  30. 30

    Pan, Y. H. & Oort, A. H. Clin. Dynam. 4, 191–205 (1990).

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ghil, M., Vautard, R. Interdecadal oscillations and the warming trend in global temperature time series. Nature 350, 324–327 (1991). https://doi.org/10.1038/350324a0

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing