Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Image reconstructions of helical assemblies of the HIV-1 CA protein

Abstract

The type 1 human immunodeficiency virus (HIV-1) contains a conical capsid comprising 1,500 CA protein subunits, which organizes the viral RNA genome for uncoating and replication in a new host cell. In vitro, CA spontaneously assembles into helical tubes and cones that resemble authentic viral capsids1,2,3,4,5,6,7. Here we describe electron cryo-microscopy and image reconstructions of CA tubes from six different helical families. In spite of their polymorphism, all tubes are composed of hexameric rings of CA arranged with approximate local p6 lattice symmetry. Crystal structures of the two CA domains were ‘docked’ into the reconstructed density, which showed that the amino-terminal domains form the hexameric rings and the carboxy-terminal dimerization domains connect each ring to six neighbours. We propose a molecular model for the HIV-1 capsid that follows the principles of a fullerene cone6, in which the body of the cone is composed of curved hexagonal arrays of CA rings and the ends are closed by inclusion of 12 pentagonal ‘defects’.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Electron cryo-micrographs and image reconstructions of HIV-1 CA assemblies.
Figure 2: Reconstructed density and molecular modelling of a CA tube.
Figure 3: CA helical family polymorphism and cone formation.

Similar content being viewed by others

References

  1. Ehrlich, L. S., Agresta, B. E. & Carter, C. A. Assembly of recombinant human immunodeficiency virus type 1 capsid protein in vitro. J. Virol. 66 , 4874–4883 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Campbell, S. & Vogt, V. M. Self-assembly in vitro of purified CA-NC proteins from rous sarcoma virus and human immunodeficiency virus type 1. J. Virol. 69, 6487– 6497 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Groß, I., Hohenberg, H. & Kräusslich, H.-G. In vitro assembly properties of purified bacterially expressed capsid proteins of human immunodeficiency virus. Eur. J. Biochem. 249, 592–600 (1997).

    Article  Google Scholar 

  4. von Schwedler, U. K. et al. Proteolytic refolding of the HIV-1 capsid protein amino-terminus facilitates viral core assembly. EMBO J. 17, 1555–1568 (1998).

    Article  CAS  Google Scholar 

  5. Groß, I., Hohenberg, H., Huckhagel, C. & Kräusslich, H.-G. N-terminal extension of human immunodeficiency virus capsid protein converts the in vitro assembly phenotype from tubular to spherical particles. J. Virol. 72, 4798–4810 (1998).

    PubMed  PubMed Central  Google Scholar 

  6. Ganser, B. K., Li, S., Klishko, V. Y., Finch, J. T. & Sundquist, W. I. Assembly and analysis of conical models for the HIV-1 core. Science 283, 80–83 (1999).

    Article  ADS  CAS  Google Scholar 

  7. Grattinger, M. et al. In vitro assembly properties of wild-type and cyclophilin-binding defective human immunodeficiency virus capsid proteins in the presence and absence of cyclophilin A. Virology 257, 247–60 (1999).

    Article  CAS  Google Scholar 

  8. Fukui, T., Imura, S., Goto, T. & Nakai, M. Inner architecture of human and simian immunodeficiency viruses. Micro. Res. Tech. 25, 335–340 ( 1993).

    Article  CAS  Google Scholar 

  9. Kotov, A., Zhou, J., Flicker, P. & Aiken, C. Association of nef with the human immunodeficiency virus type 1 core. J. Virol. 73, 8824–30 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Welker, R., Hohenberg, H., Tessmer, U., Huckhagel, C. & Kräusslich, H. G. Biochemical and structural analysis of isolated mature cores of human immunodeficiency virus type 1. J. Virol. 74, 1168–1177 (2000).

    Article  CAS  Google Scholar 

  11. Dorfman, T., Bukovsky, A., Öhagen, Å., Höglund, S. & Göttlinger, H. G. Functional domains of the capsid protein of human immunodeficiency virus type 1. J. Virol. 68, 8180–8187 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Gitti, R. K. et al. Structure of the amino-terminal core domain of the HIV-1 capsid protein. Science 273, 231– 235 (1996).

    Article  ADS  CAS  Google Scholar 

  13. Momany, C. et al. Crystal structure of dimeric HIV-1 capsid protein. Nature Struct. Biol. 3, 763–770 (1996).

    Article  CAS  Google Scholar 

  14. Gamble, T. R. et al. Crystal structure of human cyclophilin A bound to the amino-terminal domain of HIV-1 capsid. Cell 87, 1285– 1294 (1996).

    Article  CAS  Google Scholar 

  15. Berthet-Colominas, C. et al. Head-to-tail dimers and interdomain flexibility revealed by the crystal structure of HIV-1 capsid protein (p24) complexed with a monoclonal antibody Fab. EMBO J. 18, 1124– 1136 (1999).

    Article  CAS  Google Scholar 

  16. Worthylake, D. K., Wang, H., Yoo, S., Sundquist, W. I. & Hill, C. P. Structures of the HIV-1 capsid protein dimerization domain at 2. 6Å resolution. Acta Crystallogr. D 55, 85–92 (1999).

    Article  CAS  Google Scholar 

  17. Jin, Z., Jin, L., Peterson, D. L. & Lawson, C. L. Model for lentivirus capsid core assembly based on crystal dimers of EIAV p26. J. Mol. Biol. 286, 83–93 ( 1999).

    Article  CAS  Google Scholar 

  18. Caspar, D. & Klug, A. Physical principles in the construction of regular viruses. Cold Spring Harb. Symp. Quant. Biol. 27, 1–24 (1962).

    Article  CAS  Google Scholar 

  19. Katsura, I. Structure and inhierent properties of the bacteriophage lambda head shell. I. Polyheads produced by two defective mutants in the major head protein. J. Mol. Biol. 121, 71– 93 (1978).

    Article  CAS  Google Scholar 

  20. Steven, A. C. & Trus, B. L. in Electron Microscopy of Proteins 5, Viral Structure 1–35 (Academic, London, 1986).

    Google Scholar 

  21. Cremers, A. M. F., Oostergetel, G. T., Schilstra, M. J. & Mellema, J. E. An electron microscopic investigation of the structure of alfalfa mosaic virus. J. Mol. Biol. 145, 545– 561 (1981).

    Article  CAS  Google Scholar 

  22. Zhang, H., Dornadula, G., Alur, P., Laughlin, M. A. & Pomerantz, R. J. Amphipathic domains in the C terminus of the transmembrane protein (gp41) permeabilize HIV-1 virions: a molecular mechanism underlying natural endogenous reverse transcription. Proc. Natl Acad. USA 93, 12519–12524 ( 1996).

    Article  ADS  CAS  Google Scholar 

  23. Groß, I. et al. A conformational switch controlling HIV-1 morphogenesis. EMBO J. 19, 103–113 ( 2000).

    Article  Google Scholar 

  24. Franke, E. K. & Luban, J. Cyclophilin and Gag in HIV-1 replication and pathogenesis. Adv. Exp. Med. Biol. 374, 217–28 (1995).

    Article  CAS  Google Scholar 

  25. Mammano, F., Öhagen, Å., Höglund, S. & Göttlinger, H. G. Role of the major homology region of HIV-1 in virion morphogenesis. J. Virol. 68, 4927–4936 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Aberham, C., Weber, S. & Phares, W. Spontaneous mutations in the human immunodeficiency virus type 1 gag gene that affect viral replication in the presence of cyclosporins. J. Virol. 70, 3536–3544 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Toyoshima, C. & Unwin, N. Three-dimensional structure of the acetylcholine receptor by cryoelectron microscopy and helical image reconstruction. J. Cell Biol. 111, 2623– 2635 (1990).

    Article  CAS  Google Scholar 

  28. Crowther, R. A., Henderson, R. & Smith, J. M. MRC image processing programs. J. Struct. Res. 116, 9–16 ( 1996).

    CAS  Google Scholar 

  29. Jones, T. A., Zou, J., Y., Cowan, S. W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and location of errors in these models. Acta Crystallogr. A 47, 110–119 ( 1991).

    Article  Google Scholar 

Download references

Acknowledgements

We thank W. Clemons, B. Ganser, J. Smith, C. Villa and D. Worthylake for technical assistance; J. Berriman for help and advice with data collection; and M. Stowell and N. Unwin for guidance in the use of their image reconstruction software. We also thank N. Unwin and R. Henderson for critical reading of our manuscript; and H.-G. Kräusslich for communicating results before publication. This research was supported by the MRC (UK) and by the NIH (US).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wesley I. Sundquist.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, S., Hill, C., Sundquist, W. et al. Image reconstructions of helical assemblies of the HIV-1 CA protein. Nature 407, 409–413 (2000). https://doi.org/10.1038/35030177

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35030177

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing