Letter | Published:

Detection of geometric phases in superconducting nanocircuits

Nature volume 407, pages 355358 (21 September 2000) | Download Citation

Subjects

Abstract

When a quantum-mechanical system undergoes an adiabatic cyclic evolution, it acquires a geometrical phase factor1 in addition to the dynamical one; this effect has been demonstrated in a variety of microscopic systems2. Advances in nanotechnology should enable the laws of quantum dynamics to be tested at the macroscopic level3, by providing controllable artificial two-level systems (for example, in quantum dots4 and superconducting devices5,6). Here we propose an experimental method to detect geometric phases in a superconducting device. The setup is a Josephson junction nanocircuit consisting of a superconducting electron box. We discuss how interferometry based on geometrical phases may be realized, and show how the effect may be applied to the design of gates for quantum computation.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. Lond. A 392, 45–57 (1984).

  2. 2.

    & (eds) Geometric Phases In Physics (World Scientific, Singapore, 1989).

  3. 3.

    & Influence of dissipation on quantum tunneling in macroscopic systems. Phys. Rev. Lett. 46, 211–214 ( 1981).

  4. 4.

    et al. Microwave spectroscopy of a quantum dot molecule. Nature 395, 873–876 ( 1998).

  5. 5.

    , & Coherent control of macroscopic quantum states in a single-Cooper-pair box. Nature 398, 786 –788 (1999).

  6. 6.

    , , , & Quantum superposition of distinct macroscopic states. Nature 406, 43–46 (2000).

  7. 7.

    , , & Geometric quantum computation using nuclear magnetic resonance. Nature 403, 869–871 (2000).

  8. 8.

    & Holonomic quantum computation. Phys. Lett. A 264, 94–99 (1999).

  9. 9.

    , , , & On quantum algorithms. Complexity 4, 33–42 ( 1998).

  10. 10.

    & Quantum computation and Shor's factoring algorithm. Rev. Mod. Phys. 68, 733– 753 (1996).

  11. 11.

    , & Quantum manipulation of small Josephson junctions. Phys. Rev. Lett. 79, 2371–2374 (1997).

  12. 12.

    , & Josephson-junction qubits with controlled couplings. Nature 398, 305–307 (1999).

  13. 13.

    Josephson-junction qubits with controlled couplings. Solid State Commun. 105, 659–664 ( 1998).

  14. 14.

    et al. Josephson persistent current qubit. Science 285, 1036–1039 (1999).

  15. 15.

    , , , & Environmentally decoupled sds-wave Josephson junctions for quantum computing. Nature 398, 679–681 ( 1999).

  16. 16.

    , & Fidelity and leakage of Josephson qubits. Phys. Rev. Lett. 83, 5385–5388 (1999).

  17. 17.

    , & Influence of controlled quantum-mechanical charge and phase fluctuations on Josephson tunneling. Phys. Rev. Lett. 75, 721–724 (1995).

  18. 18.

    , , , & Quantum coherence with a single Cooper pair. Phys. Scr. T76, 165–170 (1998).

  19. 19.

    Introduction to Superconductivity 2nd edn (McGraw-Hill, New York, 1996).

  20. 20.

    & Tables of Integrals, Series, and Products 5th edn (Academic, London, 1999 ).

  21. 21.

    , & Universality in quantum computation. Proc. R. Soc. Lond. A 449, 669–677 (1995).

  22. 22.

    , , , & Adiabatic transfer of Cooper pairs in arrays of Josephson junctions. Phys. Rev. B 60, R9931–R9934 (1999).

Download references

Acknowledgements

We thank D.V. Averin, A. Ekert, G. Giaquinta, J. Jones, B. Pannetier and E. Paladino for helpful discussions. G.F. acknowledges kind hospitality at LEPES-CNRS (Grenoble). Part of the work of R.F. was done at ISI-Torino. This work was supported by the European Community (TMR, IST-SQUIBIT, IST-EQUIP), by INFM-PRA-SSQI and by ELSAG S.p.A.

Author information

Affiliations

  1. *Dipartimento di Metodologie Fisiche e Chimiche (DMFCI), Università di Catania, viale A. Doria 6, I-95125 Catania, Italy

    • Giuseppe Falci
    • , Rosario Fazio
    •  & Jens Siewert
  2. †Dipartimento di Scienze Fisiche ed Astronomiche (DSFA), Università di Palermo, via Archirafi 36, I-90123 Palermo, Italy

    • G. Massimo Palma
  3. ‡Centre for Quantum Computation, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, UK

    • Vlatko Vedral
  4. §Istituto Nazionale per la Fisica della Materia (INFM), Unità di Catania e Palermo, Italy

    • Giuseppe Falci
    • , Rosario Fazio
    • , G. Massimo Palma
    •  & Jens Siewert

Authors

  1. Search for Giuseppe Falci in:

  2. Search for Rosario Fazio in:

  3. Search for G. Massimo Palma in:

  4. Search for Jens Siewert in:

  5. Search for Vlatko Vedral in:

Corresponding author

Correspondence to Giuseppe Falci.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/35030052

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.