Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress
  • Published:

Perspectives for vascular genomics

Abstract

Diseases of the vascular system result from a complex mixture of genetic and environmental factors. Data sets, technologies and strategies emanating from the human genome programme have been applied to the analysis of both rare single-gene and common multigenic vascular disorders. Genomic approaches including inter- and intraspecies sequence comparisons, genotyping with dense marker sets spanning the genome, large-scale mutagenesis screens of model organisms, and genome-wide expression profiling have all begun to contribute to the identification of new genes and mechanisms that are central to cardiovascular disease processes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Comparative sequences of human and mouse DNA.
Figure 2: Identification of SNPs.
Figure 3: Genome-wide mutagenesis.
Figure 4: Expression array profiling.

Similar content being viewed by others

References

  1. Sanger, F., Nickeln, S. & Coulson, A. DNA sequencing with chain-terminating inhibitors. Proc. Natl Acad. Sci. USA 74, 5463– 5467 (1977).

    Article  ADS  CAS  Google Scholar 

  2. Maxam, A. & Gilbert, W. A new method for sequencing DNA . Proc. Natl Acad. Sci. USA 74, 560– 564 (1977).

    Article  ADS  CAS  Google Scholar 

  3. Loots, G. G. et al. Identification of a coordinate regulator of interleukins 4, 13, and 5 by cross-species sequence comparisons. Science 288, 136–140 (2000).

    Article  ADS  CAS  Google Scholar 

  4. Göttgens, B. et al. Analysis of vertebrate SCL loci identifies conserved enhancers. Nature Biotechnol. 18, 181– 186 (2000).

    Article  Google Scholar 

  5. Mayor, C. et al. VISTA: visualizing global DNA sequence alignments of arbitrary length. Bioinformatics (in the press).

  6. Porcher, C. et al. The T cell leukemia oncoprotein SCL/tal-1 is essential for development of all hematopoietic lineages. Cell 86, 47–57 (1996).

    Article  CAS  Google Scholar 

  7. Robb, L. et al. The scl gene product is required for the generation of all hematopoietic lineages in the adult mouse. EMBO J. 15, 4123–4129 (1996).

    Article  CAS  Google Scholar 

  8. Lifton, R. P. Molecular genetics of human blood pressure variation. Science 272, 676–680 (1996).

    Article  ADS  CAS  Google Scholar 

  9. Bodzioch, M. et al. The gene encoding ATP-binding cassette transporter 1 is mutated in Tangier disease. Nature Genet. 22, 347 –351 (1999).

    Article  CAS  Google Scholar 

  10. Brooks-Wilson, A. et al. Mutations in ABC1 in Tangier disease and familial high-density lipoprotein deficiency. Nature Genet. 22, 336–345 (1999).

    Article  CAS  Google Scholar 

  11. Rust, S. et al. Tangier disease is caused by mutations in the gene encoding ATP-binding cassette transporter 1. Nature Genet. 22, 352–355 (1999).

    Article  CAS  Google Scholar 

  12. Collins, F. S., Guyer, M. S. & Charkravarti, A. Variations on a theme: cataloging human DNA sequence variation. Science 278, 580– 581 (1997).

    Google Scholar 

  13. Risch, N. & Merikangas, K. The future of genetic studies of complex human diseases. Science 273, 1516–1517 (1996).

    Article  ADS  CAS  Google Scholar 

  14. Lander, E. S. The new genomics: global views of biology. Science 274, 536–539 (1996).

    Article  ADS  CAS  Google Scholar 

  15. Nickerson, D. A. et al. DNA sequence diversity in a 9.7-kb region of the human lipoprotein lipase gene. Nature Genet. 19, 233– 240 (1998).

    Article  CAS  Google Scholar 

  16. Rieder, M. J., Taylor, S. L., Clark, A. G. & Nickerson, D. A. Sequence variation in the human angiotensin converting enzyme. Nature Genet. 22, 59–62 (1999).

    Article  CAS  Google Scholar 

  17. Halushka, M. K. et al. Patterns of single-nucleotide polymorphisms in candidate genes for blood-pressure homeostasis. Nature Genet. 22, 239–247 (1999).

    Article  CAS  Google Scholar 

  18. Kreutz, R. et al. Dissection of a quantitative trait locus for genetic hypertension on rat chromosome 10. Proc. Natl Acad. Sci. USA 92, 8778–8782 (1995).

    Article  ADS  CAS  Google Scholar 

  19. Jacob, H. et al. Genetic mapping of a gene causing hypertension in the stroke-prone spontaneously hypertensive rat. Cell 67, 213–224 (1991).

    Article  CAS  Google Scholar 

  20. Stoll, M. et al. New target regions for human hypertension via comparative genomics . Genome Res. 10, 473–482 (2000).

    Article  CAS  Google Scholar 

  21. Mu, J. L. et al. Quantitative trait loci analysis for the differences in susceptibility to atherosclerosis and diabetes between inbred mouse strains C57BL/6J and C57BLKS/J. J. Lipid Res. 40, 1328– 1335 (1999).

    CAS  PubMed  Google Scholar 

  22. Zhang, S. H. et al. Spontaneous hypercholesterolemia and arterial lesions in mice lacking apolipoprotein E. Science 258, 468 –471 (1992).

    Article  ADS  CAS  Google Scholar 

  23. Plump, A. S. et al. Severe hypercholesterolemia and atherosclerosis in apolipoprotein E-deficient mice created by homologous recombination in ES cells. Cell 71, 343–353 ( 1992).

    Article  CAS  Google Scholar 

  24. Ishibashi, S. et al. Massive xanthomatosis and atherosclerosis in cholesterol-fed low density lipoprotein receptor-negative mice. J. Clin. Invest. 93, 1885–1893 ( 1994).

    Article  CAS  Google Scholar 

  25. Dansky, H. et al. Genetic background determines the extent of atherosclerosis in apoE-deficient mice. Arterioscler. Thromb. Vasc. Biol. 19, 1960–1968 (1999).

    Article  CAS  Google Scholar 

  26. Amsterdam, A. et al. A large-scale insertional mutagenesis screen in zebrafish . Genes Dev. 13, 2713–2724 (1999).

    Article  CAS  Google Scholar 

  27. Vitaterna, M. H. et al. Mutagenesis and mapping of a mouse gene, Clock, essential for circadian behavior. Science 264, 719 –725 (1994).

    Article  ADS  CAS  Google Scholar 

  28. Lee, R. K. et al. Cardiovascular development in the zebrafish. II. Endocardial progenitors are sequestered within the heart field. Development 120, 3361–3366 ( 1994).

    CAS  PubMed  Google Scholar 

  29. Stainier, D. Y., Lee, R. K. & Fishman, M. C. Cardiovascular development in the zebrafish. I. Myocardial fate map and heart tube formation. Development 119, 31–40 (1993).

    CAS  Google Scholar 

  30. Zhong, T. P. et al. gridlock, an HLH gene required for assembly of the aorta in zebrafish. Science 287, 1820– 1824 (2000).

    Article  ADS  CAS  Google Scholar 

  31. Weinstein, B. M. et al. Gridlock, a localized heritable vascular patterning defect in the zebrafish. Nature Med. 1, 1143– 1147 (1995).

    Article  CAS  Google Scholar 

  32. Nolan, P. et al. A systematic, genome-wide, phenotype-driven mutagenesis programme for gene function studies in the mouse. Nature Genet. 25, 440–443 (2000)

    Article  CAS  Google Scholar 

  33. deAngelis, M. et al. Genome-wide, large-scale production of mutant mice by ENU mutagenesis. Nature Genet. 25, 444– 447 (2000).

    Article  Google Scholar 

  34. The chipping forecast. Nature Genet. 21(Suppl.), 1–60 (1999).

  35. Lawn, R. M. et al. The Tangier disease gene product ABC1 controls the cellular apolipoprotein-mediated lipid removal pathway. J. Clin. Invest. 104, R25–R31 ( 1999).

    Article  CAS  Google Scholar 

  36. Aitman, T. J. et al. Identification of Cd36 (Fat) as an insulin-resistance gene causing defective fatty acid and glucose metabolism in hypertensive rats . Nature Genet. 21, 76– 83 (1999).

    Article  CAS  Google Scholar 

  37. Rust, S. et al. Assignment of Tangier disease to chromosome 9q31 by a graphical linkage exclusion strategy. Nature Genet. 20, 96–98 (1998). [Published erratum appears in Nature Genet. 20, 312 ( 1998).]

    Article  CAS  Google Scholar 

  38. Hayden, M. R. et al. Cholesterol efflux regulatory protein, Tangier disease and familial high-density lipoprotein deficiency. Curr. Opin. Lipidol. 11, 117–122 ( 2000).

    Article  CAS  Google Scholar 

  39. Reaven, G. M., Banting lecture 1988. Role of insulin resistance in human disease. Diabetes 37, 1595–1607 ( 1988).

    Article  CAS  Google Scholar 

  40. Friddle, C. et al. Expression profiling reveals distinct sets of genes altered during induction and regression of cardiac hypertophy. Proc. Natl Acad. Sci. USA 97, 6745–6750 (2000).

    Article  ADS  CAS  Google Scholar 

  41. Stanton, L. et al. Altered patterns of gene expression in response to myocardial infarction. Circ. Res. 86, 919– 920 (2000).

    Article  Google Scholar 

  42. Gelfand, M. S., Koonin, E. V. & Mironov, A. A. Prediction of transcription regulatory sites in Archaea by a comparative genomic approach. Nucleic Acids Res. 28, 695–705 (2000).

    Article  CAS  Google Scholar 

  43. Koonin, E. V. & Galperin, M. Y. Prokaryotic genomes: the emerging paradigm of genome-based microbiology. Curr. Opin. Genet. Dev. 7, 757–763 ( 1997).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward M. Rubin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rubin, E., Tall, A. Perspectives for vascular genomics. Nature 407, 265–269 (2000). https://doi.org/10.1038/35025236

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35025236

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing