Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

WNT signalling molecules act in axis formation in the diploblastic metazoan Hydra

Abstract

Members of the Wnt/wingless family of secreted proteins act as short-range inducers and long-range organizers during axis formation, organogenesis and tumorigenesis in many developing tissues1. Wnt signalling pathways are conserved in nematodes, insects and vertebrates2. Despite its developmental significance, the evolutionary origin of Wnt signalling is unclear. Here we describe the molecular characterization of members of the Wnt signalling pathway—Wnt, Dishevelled, GSK3, β-Catenin and Tcf/Lef—in Hydra, a member of the evolutionarily old metazoan phylum Cnidaria. Wnt and Tcf are expressed in the putative Hydra head organizer, the upper part of the hypostome. Wnt, β-Catenin and Tcf are transcriptionally upregulated when head organizers are established early in bud formation and head regeneration. Wnt and Tcf expression domains also define head organizers created by de novo pattern formation in aggregates. Our results indicate that Wnt signalling may be involved in axis formation in Hydra and support the idea that it was central in the evolution of axial differentiation in early multicellular animals.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Structural and functional conservation of Hydra Wnt signalling molecules.
Figure 2: Expression of Wnt signalling molecules in morphogenesis of intact Hydra polyps visualized by whole-mount in situ hybridization.
Figure 3: Expression of Wnt signalling molecules during head regeneration.
Figure 4: Expression dynamics of HyTcf and HyWnt during aggregate development.

References

  1. Cadigan, K. M. & Nusse, R. Wnt signalling: a common theme in animal development. Genes Dev. 11, 3286– 3305 (1997).

    Article  CAS  Google Scholar 

  2. Cox, R. T. & Peifer, M. Wingless signalling: The inconvenient complexities of life. Curr. Biol. 8, R140 –R144 (1998).

    Article  CAS  Google Scholar 

  3. Hobmayer, E. et al. Identification of a hydra homologue of the β-catenin/plakoglobin/armadillo gene family. Gene 172, 155– 159 (1996).

    Article  CAS  Google Scholar 

  4. Minobe, S. et al. Identification and characterization of the epithelial polarity receptor “Frizzled” in Hydra vulgaris. Dev. Genes Evol. 210, 258–262 (2000).

    Article  CAS  Google Scholar 

  5. Molenaar, M. et al. XTcf-3 transcription factor mediates β-catenin-induced axis formation in Xenopus embryos. Cell 86, 391–399 (1996).

    Article  CAS  Google Scholar 

  6. Bode, P. M. & Bode, H. R. in Pattern Formation. A Primer in Developmental Biology (eds Malacinski, G. M. & Bryant, S. V.) 213–241 (Macmillan, New York, 1984 ).

    Google Scholar 

  7. Meinhardt, H. A model for pattern formation of hypostome, tentacles, and foot in hydra: How to form structures close to each other, how to form them at a distance. Dev. Biol. 157, 321–333 (1993).

    Article  CAS  Google Scholar 

  8. Wolpert, L. Principles of Development (Oxford Univ. Press, Oxford, 1998).

    Google Scholar 

  9. Niehrs, C. & Pollet, N. Synexpression groups in eukaryotes. Nature 402, 483–487 (1999).

    Article  ADS  CAS  Google Scholar 

  10. Otto, J. J. & Campbell, R. D. Budding in Hydra attenuata : Bud stages and fate map. J. Exp. Zool. 200, 417–428 (1977).

    Article  CAS  Google Scholar 

  11. Achermann, J. & Sugiyama, T. Genetic analysis of developmental mechanisms in Hydra. X. Morphogenetic potentials of a regeneration-deficient strain (reg-16). Dev. Biol. 107, 13– 27 (1985).

    Article  CAS  Google Scholar 

  12. Gierer, A. et al. Regeneration of hydra from reaggregated cells. Nature New Biol. 239, 98–101 (1972).

    Article  CAS  Google Scholar 

  13. Gierer, A. & Meinhardt, H. A theory of biological pattern formation. Kybernetik 12, 30– 39 (1972).

    Article  CAS  Google Scholar 

  14. MacWilliams, H. K. Hydra transplantation phenomena and the mechanism of Hydra head regeneration. II. Properties of head activation. Dev. Biol. 96, 239–257 (1983).

    Article  CAS  Google Scholar 

  15. van de Wetering, M. et al. Armadillo coactivates transcription driven by the product of the Drosophila segment polarity gene dTCF. Cell 88, 789–799 ( 1997).

    Article  CAS  Google Scholar 

  16. Lessing, D. & Nusse, R. Expression of wingless in the Drosophila embryo: a conserved cis-acting element lacking conserved Ci-binding sites is required for patched-mediated repression. Development 125, 1469–1476 (1998).

    CAS  PubMed  Google Scholar 

  17. Conway Morris, S. Metazoan phylogenies: falling into place or falling to pieces? A palaeontological perspective. Curr. Op. Genet. Dev. 8, 662 –667 (1998).

    Article  CAS  Google Scholar 

  18. Aguinaldo, A. M. A. et al. Evidence for a clade of nematodes, arthropods and other moulting animals. Nature 387, 489–493 (1997).

    Article  CAS  Google Scholar 

  19. Knoll, A. H. & Carroll, S. B. Early animal evolution: Emerging views from comparative biology and geology. Science 284, 2129–2137 (1999).

    Article  CAS  Google Scholar 

  20. Slack, J. M. W., Holland, P. W. H. & Graham, C. F. The zootype and the phylotypic stage. Nature 361, 490–492 ( 1993).

    Article  ADS  CAS  Google Scholar 

  21. Finnerty, J. R. & Martindale, M. Q. The evolution of the Hox cluster: insights from outgroups. Curr. Op. Genet. Dev. 8, 681–687 ( 1998).

    Article  CAS  Google Scholar 

  22. Kuhn, K., Streit, B. & Schierwater, B. Isolation of Hox genes from the scyphozoan Cassiopeia xamachana: Implications for the early evolution of Hox genes. Mol. Dev. Evol. 285, 63–75 (1999).

    Article  CAS  Google Scholar 

  23. Gauchat, D. et al. Evolution of Antp-class genes and differential expression of Hydra Hox/paraHox genes in anterior patterning. Proc. Natl Acad. Sci. USA 97, 4493– 4498 (2000).

    Article  ADS  CAS  Google Scholar 

  24. Neumann, C. J. & Cohen, S. M. Long-range action of Wingless organizes the dorsal-ventral axis of the Drosophila wing. Development 124, 871–880 (1997).

    CAS  Google Scholar 

  25. Kopp, A., Blackman, R. K. & Duncan, I. Wingless, Decapentaplegic and EGF receptor signalling pathways interact to specify dorso-ventral pattern in the adult abdomen of Drosophila. Development 126, 3495– 3507 (1999).

    CAS  PubMed  Google Scholar 

  26. Larabell, C. A. et al. Establishment of the dorso-ventral axis in Xenopus embryos is presaged by early asymmetries in β-catenin that are modulated by the Wnt signalling pathway. J. Cell Biol. 136, 1123–1136 (1997).

    Article  CAS  Google Scholar 

  27. Willmer, P. Invertebrate Relationships. Patterns in Animal Evolution (Cambridge Univ. Press, Cambridge, UK, 1990).

    Book  Google Scholar 

  28. Nielsen, C. Animal Evolution: Interrelationships of the Living Phyla (Oxford Univ. Press, Oxford, 1995).

    Google Scholar 

  29. Frohman, M. A. in PCR Primer—A Laboratory Manual (eds Dieffenbach, C. W. & Dveksler, G. S.) 381–409 (CSHL, New York, 1995).

    Google Scholar 

  30. Technau, U. & Bode, H. R. HyBra1, a brachyury homologue, acts during head formation in hydra. Development 126 , 999–1010 (1999).

    CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Sarras for sharing unpublished data, the Mishima Hydra lab for providing reg-16 mutants, C. N. David and U. Technau for critical comments on the manuscript, and K. Wehner and P. Lübberich for assistance in cloning. This work was supported by grants from the Deutsche Forschungsgemeinschaft (B.H. and T.W.H).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bert Hobmayer.

Supplementary information

Supplementary Information

Supplementary Information

Supplementary Information

Supplementary Information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hobmayer, B., Rentzsch, F., Kuhn, K. et al. WNT signalling molecules act in axis formation in the diploblastic metazoan Hydra. Nature 407, 186–189 (2000). https://doi.org/10.1038/35025063

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35025063

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing