Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Genetic evidence for female host-specific races of the common cuckoo


The common cuckoo Cuculus canorus is divided into host-specific races (gentes)1. Females of each race lay a distinctive egg type that tends to match the host's eggs, for instance, brown and spotted for meadow pipit hosts or plain blue for redstart hosts2,3,4. The puzzle is how these gentes remain distinct. Here, we provide genetic evidence that gentes are restricted to female lineages, with cross mating by males maintaining the common cuckoo genetically as one species. We show that there is differentiation between gentes in maternally inherited mitochondrial DNA, but not in microsatellite loci of nuclear DNA. This supports recent behavioural evidence that female, but not male, common cuckoos specialize on a particular host5, and is consistent with the possibility that genes affecting cuckoo egg type are located on the female-specific W sex chromosome6. Our results also support the ideas that common cuckoos often switched hosts during evolution7,8, and that some gentes may have multiple, independent origins, due to colonization by separate ancestral lineages.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Unrooted, maximum parsimony trees for cuckoo mtDNA haplotypes from Great Britain (a) and Japan (b).


  1. Newton, A. A Dictionary of Birds. (Black, London, 1893).

    Book  Google Scholar 

  2. Baker, E. C. S. Cuckoo Problems. (Witherby, London, 1942).

    Google Scholar 

  3. Brooke, M. de L. & Davies, N. B. Egg mimicry by cuckoos, Cuculus canorus, in relation to discrimination by hosts. Nature 335, 630–632 (1988).

    Article  ADS  Google Scholar 

  4. Moksnes, A. & Røskaft, E. Egg-morphs and host preference in the common cuckoo (Cuculus canorus): an analysis of cuckoo and host eggs from European museum collections. J. Zool. 236 , 625–648 (1995).

    Article  Google Scholar 

  5. Marchetti, K., Nakamura, H. & Gibbs, H. L. Host race formation in the Common Cuckoo. Science 282, 471–472 ( 1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Punnett, R. C. Inheritance of egg-colour in the parasitic cuckoos. Nature 132, 892 (1933).

    Article  ADS  Google Scholar 

  7. Davies, N. B. & Brooke, M. de L. An experimental study of co-evolution between the cuckoo, Cuculus canorus, and its hosts. II. Host egg markings, chick discrimination, and general discussion. J. Anim. Ecol. 58, 225–236 (1989).

    Article  Google Scholar 

  8. Davies, N. B. Cuckoos, Cowbirds and Other Cheats (Poyser, London, 2000).

    Google Scholar 

  9. Gibbs, H. L., Brooke, M. de L., & Davies, N. B. Analysis of genetic differentiation of host races of the common cuckoo Cuculus canorus using mitochondrial and microsatellite DNA variation. Proc. R. Soc. Lond. B 263, 89–96 (1996).

    Article  ADS  CAS  Google Scholar 

  10. Nakamura, H. & Miyazawa, Y. Movements, space use and social organization of radio-tracked cuckoos during the breeding season in Japan. Jap. J. Ornithol. 46, 23– 53 (1997).

    Article  Google Scholar 

  11. Nakamura, H., Kubota, S. & Suzuki, R. in Parasitic Birds and Their Hosts (eds Rothstein, S. I. & Robinson, S. K.) 94–112 (Oxford Univ. Press, Oxford, 1998).

    Google Scholar 

  12. Steel, M. A., Cooper, A. C. & Penny, D. Confidence intervals for the divergence time of two clades. System. Biol. 45, 127– 134 (1996).

    Article  Google Scholar 

  13. Avise, J. C. & Walker, D. Pleistocene phylogeographic effects on avian populations and the speciation process. Proc. R. Soc. Lond. B 265, 457–463 ( 1998).

    Article  CAS  Google Scholar 

  14. Teuschl. Y., Taborsky, B. & Taborsky, M. How do cuckoos find their hosts? The role of habitat imprinting. Anim. Behav. 56, 1425– 1433 (1998).

    Article  PubMed  Google Scholar 

  15. Brooke, M. de L. & Davies, N. B. A failure to demonstrate host imprinting in the common cuckoo Cuculus canorus and alternative hypotheses for the maintenance of egg mimicry. Ethology 89, 154–166 ( 1991).

    Article  Google Scholar 

  16. Collias, E. C. Inheritance of egg-colour polymorphism in the village weaver (Ploceus cucullatus ). Auk 110, 683–693 (1993).

  17. Schoffner, R. N. et al. The effect of a protoporphyrin mutant on some economic traits of the chicken. Poultry Sci. 61, 817– 820 (1982).

    Article  Google Scholar 

  18. Roldan, E. R. S. & Gomendio, M. The Y chromosome as a battleground for sexual selection. Trends Ecol. Evol. 14, 58–62 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Kilner, R. M., Noble, D. G. & Davies, N. B. Signals of need in parent-offspring communication and their exploitation by the common cuckoo. Nature 397, 667–672 (1999).

    Article  ADS  Google Scholar 

  20. Dawkins, R. Unweaving the Rainbow. (Allen Lane, London, 1998).

    Google Scholar 

  21. Gibbs, H. L., De Sousa, L., Marchetti, K. & Nakamura, H. Isolation and characterization of microsatellite DNA loci for an obligate brood parasitic bird, the common cuckoo (Cuculus canorus). Mol. Ecol. 7, 1437–1439 (1998).

    CAS  PubMed  Google Scholar 

  22. Swofford, D. PAUP, Ver. 4.0 (Sinauer Associates, 1999).

  23. Schneider, S., Kueffer, J. M., Roessli, D. & Excoffier, L. Arlequin ver. 1. 1: A Software for Population Genetic Data Analysis. (Genetics and Biometry Laboratory, Univ. Geneva, Switzerland, 1997).

    Google Scholar 

  24. Raymond, M. & Rousset, F. An exact test for population differentiation. Evolution 49, 1280–1283 (1995).

    Article  PubMed  Google Scholar 

  25. Hudson, R., Slatkin, M. & Maddison, W. Estimation of levels of gene flow from DNA sequence data. Genetics 132, 583– 589 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Slatkin, M. A measure of population subdivision based on microsatellite allele frequencies. Genetics 139, 457–462 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Excoffier, L., Smouse, P. E. & Quattro, J. M. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA. Genetics 131, 479–491 ( 1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Goodnight, K., Queller, D. C. & Poznansky, T. Kinship Ver. 1.2 (1997). Available on

  29. Queller, D. C. & Goodnight, K. F. Estimating relatedness using genetic markers. Evolution 42, 258–275 (1989).

    Article  Google Scholar 

  30. Maddison, W. P. & Maddison, D. R. MacClade: Analysis of Phylogeny and Character Evolution. Ver. 3.0. (Sinauer Associates, 1992).

    Google Scholar 

Download references


We thank L. De Sousa, L. M. Tabak and M. Ramon for help in the lab, and A. Baker, P. Fu, B. Golding, A. Lotem, R. A. Morton, R. B. Payne, T. D. Price and E. Røskaft for discussion and comments. Funded by grants from NSERC (Canada) (H.L.G.), Boston University (M.D.S.), SERC (UK) and NERC (UK) (N.B.D.), and a NATO Postdoctoral Fellowship (K.M.) H.L.G. thanks S. I. Rothstein for initiating part of this collaboration by introducing him to H.N.

Author information

Authors and Affiliations


Corresponding author

Correspondence to H. Lisle Gibbs.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gibbs, H., Sorenson, M., Marchetti, K. et al. Genetic evidence for female host-specific races of the common cuckoo . Nature 407, 183–186 (2000).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing