A stable argon compound


The noble gases have a particularly stable electronic configuration, comprising fully filled s and p valence orbitals. This makes these elements relatively non-reactive, and they exist at room temperature as monatomic gases. Pauling predicted1 in 1933 that the heavier noble gases, whose valence electrons are screened by core electrons and thus less strongly bound, could form stable molecules. This prediction was verified in 1962 by the preparation of xenon hexafluoroplatinate, XePtF6, the first compound to contain a noble-gas atom2,3. Since then, a range of different compounds containing radon, xenon and krypton have been theoretically anticipated and prepared4,5,6,7,8. Although the lighter noble gases neon, helium and argon are also expected to be reactive under suitable conditions9,10, they remain the last three long-lived elements of the periodic table for which no stable compound is known. Here we report that the photolysis of hydrogen fluoride in a solid argon matrix leads to the formation of argon fluorohydride (HArF), which we have identified by probing the shift in the position of vibrational bands on isotopic substitution using infrared spectroscopy. Extensive ab initio calculations indicate that HArF is intrinsically stable, owing to significant ionic and covalent contributions to its bonding, thus confirming computational predictions11,12,13 that argon should form a stable hydride species with properties similar to those of the analogous xenon and krypton compounds reported before14,15,16,17,18.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: The infrared absorptions of HArF in solid Ar at 7.5 K.


  1. 1

    Pauling, L. The formulas of antimonic acid and the antimonates. J. Am. Chem. Soc. 55, 1895–1900 ( 1933).

    CAS  Article  Google Scholar 

  2. 2

    Bartlett, N. Xenon hexafluoroplatinate(V) Xe+[PtF6]-. Proc. Chem. Soc. 218 (1962).

  3. 3

    Graham, L., Graudejus, O., Jha, N., K. & Bartlett, N. Concerning the nature of XePtF6. Coord. Chem. Rev. 197, 321–334 (2000).

    CAS  Article  Google Scholar 

  4. 4

    Holloway, J. H. & Hope, E. G. Recent advances in noble-gas chemistry. Adv. Inorg. Chem. 46, 51–100 (1999).

    Article  Google Scholar 

  5. 5

    Nelson, L. Y. & Pimentel, G. C. Infrared detection of xenon dichloride. Inorg. Chem. 6, 1758– 1759 (1967).

    CAS  Article  Google Scholar 

  6. 6

    Turner, J. J. & Pimentel, G. C. Krypton fluoride: preparation by the matrix isolation technique. Science 140, 974–975 (1963).

    ADS  CAS  Article  Google Scholar 

  7. 7

    Bondybey, V. E. Matrix Isolation Search for Transient Species. Thesis, Univ. California, Berkeley (1971).

    Google Scholar 

  8. 8

    Stein, L. Removal of xenon and radon from contaminated atmospheres with dioxygenyl hexafluoroantimonate, O2SbF6. Nature 243, 30–32 (1973).

    ADS  CAS  Article  Google Scholar 

  9. 9

    Frenking, G. & Cremer, D. The chemistry of the noble gas elements helium, neon and argon. Facts and theoretical predictions. Struct. Bonding 73, 17–95 ( 1990).

    CAS  Article  Google Scholar 

  10. 10

    Frenking, G., Koch, W., Cremer, D., Gauss, J. & Liebman, J. F. Neon and argon bonding in first-row cations NeX+ and ArX+ (X = Li-Ne). J. Phys. Chem. 93, 3410–3418 (1989).

    CAS  Article  Google Scholar 

  11. 11

    Pettersson, M., Lundell, J. & Räsänen, M. Neutral rare gas containing charge-transfer molecules in solid matrices I: HXeCl, HXeBr, HXeI and HKrCl in Kr and Xe. J. Chem. Phys. 102, 6423–6431 (1995).

    ADS  CAS  Article  Google Scholar 

  12. 12

    Runeberg, N., Pettersson, M. Khriachtchev, L., Lundell, J. & Räsänen, M. A theoretical study of HArF: an observed neutral argon compound. J. Chem. Phys. (submitted).

  13. 13

    Wong, M. W. Prediction of a metastable heölium compound: H He F. J. Am. Chem. Soc. 122, 6289–6290 (2000).

    CAS  Article  Google Scholar 

  14. 14

    Pettersson, M., Lundell, J. & Räsänen, M. New rare-gas-containing neutral molecules. Eur. J. Inorg. Chem. 729–737 ( 1999).

  15. 15

    Pettersson, M., Khriachtchev, L., Lundell, J. & Räsänen, M. A chemical compound formed from water and xenon: HXeOH. J. Am. Chem. Soc. 121, 11904–11905 (1999).

    CAS  Article  Google Scholar 

  16. 16

    Pettersson, M., Khriachtchev, L., Lundell, J., Jolkkonen, S. & Räsänen, M. Photochemistry of HNCO in solid xenon: Photoinduced and thermally activated formation of HXeNCO. J. Phys. Chem. A 104, 3579– 3583 (2000).

    CAS  Article  Google Scholar 

  17. 17

    Pettersson, M., Nieminen, J., Khriachtchev, L. & Räsänen, M. The mechanism of formation and IR-induced decomposition of HXeI in solid Xe. J. Chem. Phys. 107, 8423– 8431 (1997).

    ADS  CAS  Article  Google Scholar 

  18. 18

    Lorenz, M., Räsänen, M. & Bondybey, V. E. Neutral xenon hydrides in solid neon and their intrinsic stability. J. Phys. Chem. A 104 , 3770–3774 (2000).

    CAS  Article  Google Scholar 

  19. 19

    Hunt, R. D. & Andrews, L. Photolysis of hydrogen fluoride in solid argon. Matrix infrared spectra of (HF)2, (HF)(DF), and (DF)2. J. Chem. Phys. 82, 4442 –4448 (1985).

    ADS  CAS  Article  Google Scholar 

  20. 20

    Khriachtchev, L., Pettersson, M. & Räsänen, M. On self-limitation of UV photolysis in rare-gas solids and some of its consequences for matrix studies. Chem. Phys. Lett. 288, 727–733 (1998).

    ADS  CAS  Article  Google Scholar 

  21. 21

    Thompson, C. A. & Andrews, L. Noble gas complexes with BeO: infrared spectra of Ng-BeO (Ng = Ar, Kr, Xe). J. Am. Chem. Soc. 116, 423–424 (1994).

    CAS  Article  Google Scholar 

  22. 22

    Frenking, G., Koch, W., Gauss, J. & Cremer, D. Stabilities and nature of the attractive interactions in HeBeO, NeBeO, and ArBeO and a comparison with analogues NGLiF, NGBN, and NGLiH (NG = He, Ar). A theoretical investigation. J. Am. Chem. Soc. 110, 8007– 8016 (1988).

    CAS  Article  Google Scholar 

  23. 23

    Evans, C. J. & Gerry, M. C. L. Noble gas-metal chemical bonding? The microwave spectra, structures, and hyperfine constants of Ar-CuX (X = F, Cl, Br). J. Chem. Phys. 112, 9363– 9374 (2000).

    ADS  CAS  Article  Google Scholar 

  24. 24

    Evans, C. J. & Gerry, M. C. L. The microwave spectra and structures of Ar-AgX (X = F, Cl, Br). J. Chem. Phys. 112, 1321–1329 (2000).

    ADS  CAS  Article  Google Scholar 

  25. 25

    Johns, J. W. C. Spectra of the protonated rare gases. J. Mol. Spectrosc. 106, 124–133 (1984).

    ADS  CAS  Article  Google Scholar 

  26. 26

    Dunning, T. H. Jr & Hay, P. J. The covalent and ionic states of the rare gas monofluorides. J. Chem. Phys. 69, 134–149 (1978).

    ADS  CAS  Article  Google Scholar 

  27. 27

    Bressler, C., Lawrence, W. G. & Schwentner, N. Spectroscopy of argon fluoride and krypton fluoride exciplexes in rare gas matrices. J. Chem. Phys. 105 , 10178–10188 (1996).

    ADS  CAS  Article  Google Scholar 

  28. 28

    Chaban, G. M., Jung, J. O. & Gerber, R. B. Ab initio calculations of anharmonic vibrational states of polyatomic systems: Electronic structure combined with vibrational self-consistent field. J. Chem. Phys. 111, 1823–1829 (1999).

    ADS  CAS  Article  Google Scholar 

Download references


We thank P. Pyykkö for discussions. This work was supported by The Academy of Finland.

Author information



Corresponding author

Correspondence to Markku Räsänen.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Khriachtchev, L., Pettersson, M., Runeberg, N. et al. A stable argon compound. Nature 406, 874–876 (2000). https://doi.org/10.1038/35022551

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing