Gain-assisted superluminal light propagation

  • A Corrigendum to this article was published on 21 June 2001

Abstract

Einstein's theory of special relativity and the principle of causality1,2,3,4 imply that the speed of any moving object cannot exceed that of light in a vacuum (c). Nevertheless, there exist various proposals5,6,7,8,9,10,11,12,13,14,15,16,17,18 for observing faster-than- c propagation of light pulses, using anomalous dispersion near an absorption line4,6,7,8, nonlinear9 and linear gain lines10,11,12,13,14,15,16,17,18, or tunnelling barriers19. However, in all previous experimental demonstrations, the light pulses experienced either very large absorption7 or severe reshaping9,19, resulting in controversies over the interpretation. Here we use gain-assisted linear anomalous dispersion to demonstrate superluminal light propagation in atomic caesium gas. The group velocity of a laser pulse in this region exceeds c and can even become negative16,17, while the shape of the pulse is preserved. We measure a group-velocity index of ng = -310(±5); in practice, this means that a light pulse propagating through the atomic vapour cell appears at the exit side so much earlier than if it had propagated the same distance in a vacuum that the peak of the pulse appears to leave the cell before entering it. The observed superluminal light pulse propagation is not at odds with causality, being a direct consequence of classical interference between its different frequency components in an anomalous dispersion region.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Gain-assisted anomalous dispersion.
Figure 2: Schematic experimental set-up.
Figure 3: Measured refractive index and gain coefficient.
Figure 4: Measured pulse advancement for a light pulse traversing through the caesium vapour in the gain-assisted superluminality state.

References

  1. 1

    Einstein, A., Lorentz, H. A., Minkowski, H. & Weyl, H. The Principle of Relativity, Collected Papers (Dover, New York, 1952).

    Google Scholar 

  2. 2

    Born, M. & Wolf, E. Principle of Optics 7th edn (Cambridge Univ. Press, Cambridge, 1997).

    Google Scholar 

  3. 3

    Landau, L. D. & Lifshitz, E. M. Electrodynamics of Continuous Media (Pergamon, Oxford, 1960).

    Google Scholar 

  4. 4

    Brillouin, L. Wave Propagation and Group Velocity (Academic, New York, 1960).

    Google Scholar 

  5. 5

    Chiao, R. Y. in Amazing Light, a Volume Dedicated to C. H. Townes on His Eightieth Birthday (ed. Chiao, R. Y.) 91–108 (Springer, New York, 1996).

    Google Scholar 

  6. 6

    Garrett, C. G. B. & McCumber, D. E. Propagation of a gaussian light pulse through an anomalous dispersion medium. Phys. Rev. A 1, 305–313 (1970).

    ADS  Article  Google Scholar 

  7. 7

    Chu, S. & Wong, S. Linear pulse propagation in an absorbing medium. Phys. Rev. Lett. 48, 738– 741 (1982).

    ADS  CAS  Article  Google Scholar 

  8. 8

    Akulshin, A. M., Barreiro, S. & Lezama, A. Steep anomalous dispersion in coherently prepared Rb vapor. Phys. Rev. Lett. 83, 4277– 4280 (1999).

    ADS  CAS  Article  Google Scholar 

  9. 9

    Basov, N. G., Ambartsumyan, R. V., Zuev, V. S., Kryukov, P. G. & Letokhov, V. S. Nonlinear amplification of light pulses. Sov. Phys. JETP 23, 16– 22 (1966).

    ADS  Google Scholar 

  10. 10

    Casperson, L. & Yariv, A. Pulse propagation in a high-gain medium. Phys. Rev. Lett. 26, 293– 295 (1971).

    ADS  Article  Google Scholar 

  11. 11

    Icsevgi, A. & Lamb, W. E. Propagation of light pulses in a laser amplifier. Phys. Rev. 185, 517– 545 (1969).

    ADS  MathSciNet  CAS  Article  Google Scholar 

  12. 12

    Picholle, E., Montes, C., Leycuras, C., Legrand, O. & Botineau, J. Observation of dissipative superluminous solitons in a Brillouin fiber ring laser. Phys. Rev. Lett. 66, 1454–1457 (1991).

    ADS  CAS  Article  Google Scholar 

  13. 13

    Fisher, D. L. & Tajima, T. Superluminous laser pulse in an active medium. Phys. Rev. Lett. 71, 4338– 4341 (1993).

    ADS  CAS  Article  Google Scholar 

  14. 14

    Chiao, R. Y. Superluminal (but causal) propagation of wave packets in transparent media with inverted atomic populations. Phys. Rev. A 48, R34–R37 (1993).

    ADS  CAS  Article  Google Scholar 

  15. 15

    Bolda, E. L., Chiao, R. Y. & Garrison, J. C. Two theorems for the group velocity in dispersive media. Phys. Rev. A 48, 3890– 3894 (1993).

    ADS  CAS  Article  Google Scholar 

  16. 16

    Steinberg, A. M. & Chiao, R. Y. Dispersionless, highly superluminal propagation in a medium with a gain doublet. Phys. Rev. A 49, 2071–2075 (1994).

    ADS  CAS  Article  Google Scholar 

  17. 17

    Mitchell, M. W. & Chiao, R. Y. Causality and negative group delays in a simple bandpass amplifier. Am. J. Phys. 66, 14–19 ( 1998).

    ADS  Article  Google Scholar 

  18. 18

    Bolda, E., Garrison, J. C. & Chiao, R. Y. Optical pulse propagation at negative group velocities due to a nearby gain line. Phys. Rev. A 49, 2938–2947 (1994).

    ADS  CAS  Article  Google Scholar 

  19. 19

    Steinberg, A. M., Kwiat, P. G. & Chiao, R. Y. Measurement of the single-photon tunneling time. Phys. Rev. Lett. 71, 708– 711 (1993).

    ADS  CAS  Article  Google Scholar 

  20. 20

    Harris, S. E. Electromagnetically induced transparency. Phys. Today 50, 36–42 (1997).

    CAS  Article  Google Scholar 

  21. 21

    Scully, M. O. & Zubairy, M. S. Quantum Optics (Cambridge Univ. Press, 1997).

    Google Scholar 

  22. 22

    Xiao, M., Li, Y.-Q., Jin, S.-Z. & Gea-Banacloche, J. Measurement of dispersion properties of electromagnetically induced transparency in rubidium atoms. Phys. Rev. Lett. 74, 666– 669 (1995).

    ADS  CAS  Article  Google Scholar 

  23. 23

    Hau, L. V., Harris, S. E., Dutton, Z. & Behroozi, C. H. Light speed reduction to 17 meters per second in an untracold atomic gas. Nature 397, 594–598 (1999).

    ADS  CAS  Article  Google Scholar 

  24. 24

    Kash, M. M. et al. Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas. Phys. Rev. Lett. 82, 5229–5232 (1999).

    ADS  CAS  Article  Google Scholar 

  25. 25

    Budker, D., Kimball, D. F., Rochester, S. M. & Yashchuk, V. V. Nonlinear magneto-optics and reduced group velocity of light in atomic vapor with slow ground state relaxation. Phys. Rev. Lett. 83, 1767–1770 (1999).

    ADS  CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank R. A. Linke for several stimulating discussions. We thank D. K. Walter, W. Happer, J. A. Giordmaine, D. J. Chadi, S. A. Solin, R. Y. Chiao, S. E. Harris and E. S. Polzik for helpful discussions. We thank E. B. Alexandrov and N. P. Bigelow for the use of the paraffin-coated caesium cells.

Author information

Affiliations

Authors

Corresponding author

Correspondence to L. J. Wang.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wang, L., Kuzmich, A. & Dogariu, A. Gain-assisted superluminal light propagation. Nature 406, 277–279 (2000). https://doi.org/10.1038/35018520

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.