Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Transcranial magnetic stimulation and the human brain


Transcranial magnetic stimulation (TMS) is rapidly developing as a powerful, non-invasive tool for studying the human brain. A pulsed magnetic field creates current flow in the brain and can temporarily excite or inhibit specific areas. TMS of motor cortex can produce a muscle twitch or block movement; TMS of occipital cortex can produce visual phosphenes or scotomas. TMS can also alter the functioning of the brain beyond the time of stimulation, offering potential for therapy.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: TMS mapping of left and right biceps from a 78-year-old subject 11 months after a left upper limb amputation.


  1. 1

    Merton, P. A. & Morton, H. B. Stimulation of the cerebral cortex in the intact human subject. Nature 285, 227 (1980).

    ADS  CAS  Article  Google Scholar 

  2. 2

    Barker, A. T., Jalinous, R. & Freeston, I. L. Noninvasive magnetic stimulation of human motor cortex. Lancet 2, 1106–1107 (1985).

    Article  Google Scholar 

  3. 3

    Amassian, V. E. et al. Suppression of visual perception by magnetic coil stimulation of human occipital cortex. Electroencephalogr. Clin. Neurophysiol. 74, 458–462 ( 1989).

    CAS  Article  Google Scholar 

  4. 4

    Corthout, E., Uttl, B., Ziemann, U., Cowey, A. & Hallett, M. Two periods of processing in the (circum)striate visual cortex as revealed by transcranial magnetic stimulation. Neuropsychologia 37, 137–145 ( 1999).

    CAS  Article  Google Scholar 

  5. 5

    Beckers, G. & Zeki, S. The consequences of inactivating areas V1 and V5 on visual motion perception. Brain 118, 49–60 (1995).

    Article  Google Scholar 

  6. 6

    Day, B. L. et al. Delay in the execution of voluntary movement by electrical or magnetic brain stimulation in intact man. Brain 112 , 649–663 (1989).

    Article  Google Scholar 

  7. 7

    Gerloff, C., Corwell, B., Chen, R., Hallett, M. & Cohen, L. G. Stimulation over the human supplementary motor area interferes with the organization of future elements in complex motor sequences. Brain 120, 1587–1602 (1997).

    Article  Google Scholar 

  8. 8

    Pascual-Leone, A., Gates, J. R. & Dhuna, A. Induction of speech arrest and counting errors with rapid-rate transcranial magnetic stimulation. Neurology 41, 697–702 (1991).

    CAS  Article  Google Scholar 

  9. 9

    Epstein, C. M. et al. Optimum stimulus parameters for lateralized suppression of speech with magnetic brain stimulation. Neurology 47 , 1590–1593 (1996).

    CAS  Article  Google Scholar 

  10. 10

    Hallett, M., Chen, R., Ziemann, U. & Cohen, L. G. in Transcranial Magnetic Stimulation. Electroencephalography and Clinical Neurophysiology Supplement 51 (eds Paulus, W., Hallett, M., Rossini, P. M. & Rothwell, J. C.) 183–187 (Elsevier, Amsterdam, 1999).

    Google Scholar 

  11. 11

    Ziemann, U., Rothwell, J. C. & Ridding, M. C. Interaction between intracortical inhibition and facilitation in human motor cortex. J. Physiol. (Lond.) 496, 873–881 (1996).

    CAS  Article  Google Scholar 

  12. 12

    Hallett, M. et al. in Spasticity: Mechanisms and Management (eds Thilmann, A. F., Burke, D. J. & Rymer, W. Z.) 67–81 (Springer, Berlin, 1993).

    Book  Google Scholar 

  13. 13

    Kew, J. J. et al. Reorganization of cortical blood flow and transcranial magnetic stimulation maps in human subjects after upper limb amputation. J. Neurophysiol. 72, 2517–2524 (1994).

    CAS  Article  Google Scholar 

  14. 14

    Sanes, J. N., Suner, S. & Donoghue, J. P. Dynamic organization of primary motor cortex output to target muscles in adult rats. I. Long-term patterns of reorganization following motor or mixed peripheral nerve lesions. Exp. Brain Res. 79, 479–491 (1990).

    CAS  Article  Google Scholar 

  15. 15

    Mano, Y. et al. Central motor reorganization after anastomosis of the musculocutaneous and intercostal nerves in patients with traumatic cervical root avulsion. Ann. Neurol. 38, 15–20 (1995).

    ADS  CAS  Article  Google Scholar 

  16. 16

    Rijntjes, M. et al. Cortical reorganization in patients with facial palsy. Ann. Neurol. 41, 621–630 (1997).

    CAS  Article  Google Scholar 

  17. 17

    Pascual-Leone, A. et al. Modulation of motor cortical outputs to the reading hand of Braille readers. Ann. Neurol. 34, 33– 37 (1993).

    CAS  Article  Google Scholar 

  18. 18

    Liepert, J., Tegenthoff, M. & Malin, J. P. Changes of cortical motor area size during immobilization. Electroencephalogr. Clin. Neurophysiol. 97, 382–386 (1995).

    CAS  Article  Google Scholar 

  19. 19

    Pascual-Leone, A., Wassermann, E. M., Sadato, N. & Hallett, M. The role of reading activity on the modulation of motor cortical outputs to the reading hand in Braille readers. Ann. Neurol. 38 , 910–915 (1995).

    CAS  Article  Google Scholar 

  20. 20

    Pascual-Leone, A. et al. Modulation of muscle responses evoked by transcranial magnetic stimulation during the acquisition of new fine motor skills. J. Neurophysiol. 74, 1037–1045 (1995).

    CAS  Article  Google Scholar 

  21. 21

    Sadato, N. et al. Activation of the primary visual cortex by Braille reading in blind subjects. Nature 380, 526– 528 (1996).

    ADS  CAS  Article  Google Scholar 

  22. 22

    Cohen, L. G. et al. Functional relevance of cross-modal plasticity in blind humans. Nature 389, 180–183 (1997).

    ADS  CAS  Article  Google Scholar 

  23. 23

    Zangaladze, A., Epstein, C. M., Grafton, S. T. & Sathian, K. Involvement of visual cortex in tactile discrimination of orientation. Nature 401, 587–590 ( 1999).

    ADS  CAS  Article  Google Scholar 

  24. 24

    Reutens, D. C., Berkovic, S. F., Macdonell, R. A. & Bladin, P. F. Magnetic stimulation of the brain in generalized epilepsy: reversal of cortical hyperexcitability by anticonvulsants. Ann. Neurol. 34, 351–355 (1993).

    CAS  Article  Google Scholar 

  25. 25

    Valzania, F. et al. Facilitation of rhythmic events in progressive myoclonus epilepsy: a transcranial magnetic stimulation study. Clin. Neurophysiol. 110, 152–157 ( 1999).

    CAS  Article  Google Scholar 

  26. 26

    Ziemann, U., Lönnecker, S., Steinhoff, B. J. & Paulus, W. Effects of antiepileptic drugs on motor cortex excitability in man. A transcranial magnetic stimulation study. Ann. Neurol. 40, 367–378 (1996).

    CAS  Article  Google Scholar 

  27. 27

    Hallett, M. The neurophysiology of dystonia. Arch. Neurol. 55, 601–603 (1998).

    CAS  Article  Google Scholar 

  28. 28

    Ridding, M. C., Sheean, G., Rothwell, J. C., Inzelberg, R. & Kujirai, T. Changes in the balance between motor cortical excitation and inhibition in focal, task specific dystonia. J. Neurol. Neurosurg. Psychiatr. 59, 493– 498 (1995).

    CAS  Article  Google Scholar 

  29. 29

    Pascual-Leone, A., Valls-Solé, J., Wassermann, E. M. & Hallett, M. Responses to rapid-rate transcranial magnetic stimulation of the human motor cortex. Brain 117, 847– 858 (1994).

    Article  Google Scholar 

  30. 30

    Chen, R. et al. Depression of motor cortex excitability by low-frequency transcranial magnetic stimulation. Neurology 48, 1398 –1403 (1997).

    CAS  Article  Google Scholar 

  31. 31

    Pascual-Leone, A. et al. Akinesia in Parkinson's Disease. II. Effects of subthreshold repetitive transcranial motor cortex stimulation. Neurology 44, 892–898 (1994).

    CAS  Article  Google Scholar 

  32. 32

    Ghabra, M. B., Hallett, M. & Wassermann, E. M. Simultaneous repetitive transcranial magnetic stimulation does not speed fine movement in PD. Neurology 52, 768–770 (1999).

    CAS  Article  Google Scholar 

  33. 33

    Siebner, H. R., Mentschel, C., Auer, C. & Conrad, B. Repetitive transcranial magnetic stimulation has a beneficial effect on bradykinesia in Parkinson's disease. NeuroReport 10, 589– 594 (1999).

    CAS  Article  Google Scholar 

  34. 34

    Siebner, H. R. et al. Low-frequency repetitive transcranial magnetic stimulation of the motor cortex in writer's cramp. Neurology 52 , 529–537 (1999).

    CAS  Article  Google Scholar 

  35. 35

    George, M. S. et al. Daily repetitive transcranial magnetic stimulation (rTMS) improves mood in depression. NeuroReport 6, 1853–1856 (1995).

    CAS  Article  Google Scholar 

  36. 36

    Triggs, W. J. et al. Effects of left frontal transcranial magnetic stimulation on depressed mood, cognition, and corticomotor threshold. Biol. Psychiatry 45, 1440–1446 (1999).

    CAS  Article  Google Scholar 

  37. 37

    Klein, E. et al. Therapeutic efficacy of right prefrontal slow repetitive transcranial magnetic stimulation in major depression: a double-blind controlled study. Arch. Gen. Psychiatry 56, 315– 320 (1999).

    CAS  Article  Google Scholar 

  38. 38

    Paus, T. et al. Transcranial magnetic stimulation during positron emission tomography: a new method for studying connectivity of the human cerebral cortex. J. Neurosci. 17, 3178–3184 (1997).

    CAS  Article  Google Scholar 

  39. 39

    Di Lazzaro, V. et al. Comparison of descending volleys evoked by transcranial magnetic and electric stimulation in conscious humans. Electroencephalogr. Clin. Neurophysiol. 109, 397–401 (1998).

    CAS  Article  Google Scholar 

  40. 40

    Wassermann, E. M. Risk and safety of repetitive transcranial magnetic stimulation: report and suggested guidelines from the International Workshop on the Safety of Repetitive Transcranial Magnetic Stimulation, June 5–7, 1996. Electroencephalogr. Clin. Neurophysiol. 108, 1–16 (1998).

    CAS  Article  Google Scholar 

  41. 41

    Brunholzl, C. & Claus, D. Central motor conduction time to upper and lower limbs in cervical cord lesions. Arch. Neurol. 51, 245–249 (1994).

    CAS  Article  Google Scholar 

Download references

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hallett, M. Transcranial magnetic stimulation and the human brain. Nature 406, 147–150 (2000).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing