Nature of the motor element in electrokinetic shape changes of cochlear outer hair cells

Article metrics


IT is the prevailing notion that cochlear outer hair cells function as mechanical effectors as well as sensory receptors1–3. Electrically induced changes in the shape of mammalian outer hair cells4,5, studied in vitro, are commonly assumed to represent an aspect of their effector process that may occur in vivo. The nature of the motile process is obscure, even though none of the established cellular motors can be involved6. Although it is known that the motile response is under voltage control7, it is uncertain whether the stimulus is a drop in the voltage along the long axis of the cell or variation in the transmembrane potential. We have now performed experiments with cells partitioned in differing degrees between two chambers. Applied voltage stimulates the cell membrane segments in opposite polarity to an amount dependent on the partitioning. The findings show, in accordance with previous suggestions6–8, that the driving stimulus is a local transmembrane voltage drop and that the cellular motor consists of many independent elements, distributed along the cell membrane and its associated cortical structures. We further show that the primary action of the motor elements is along the longitudinal dimension of the cell without necessarily involving changes in intracellular hydrostatic pressure. This establishes the outer hair cell motor as unique among mechanisms that control cell shape9.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1

    Davis, H. Hearing Res. 9, 79–90 (1983).

  2. 2

    Dallos, P. in Contemporary Sensory Neurobiology (eds Correia M. J. & Perachio A. A.) 207–230 (Alan R. Liss, New York, 1985).

  3. 3

    Kim, D. O. Hearing Res. 22, 105–114 (1986).

  4. 4

    Brownell, W. E. in Mechanisms of Hearing (eds Webster W. R. & Aitkin L. M.) 5–10 (Monash Univ. Press, Clayton, Australia, 1983).

  5. 5

    Brownell W. E., Bader, C. R., Bertrand, D. & de Ribaupierre, Y. Science 227, 194–196 (1985).

  6. 6

    Holley, M. C. & Ashmore, J. F. Proc R. Soc. B232, 413–429 (1988).

  7. 7

    Santos-Sacchi, J. & Dilger, J. P. Hearing Res. 35, 143–150 (1988).

  8. 8

    Ashmore, J. F. J. Physiol., Lond. 388, 323–347 (1987).

  9. 9

    Lackie, J. M. Cell Movement and Cell Behaviour (Allen & Unwin, London, 1986).

  10. 10

    Saito, K. Cell Tiss. Res. 229, 467–481 (1983).

  11. 11

    Evans, B. N. Hearing Res. 45, 265–282 (1990).

  12. 12

    Flock, Å., Flock, B. & Ulfendahl, M. Arch. Otorhinolaryngol. 243, 83–90 (1986).

  13. 13

    Holley, M. C. & Ashmore, J. F. Nature 335, 635–637 (1988).

  14. 14

    Bannister, L. H., Dodson, H. C., Astbury, A. F. & Douek, E. E. Prog. Brain. Res. 74, 213–219 (1988).

  15. 15

    Smith, C. A. & Dempsey, E. W. Am. J. Anat. 100, 337–367 (1957).

  16. 16

    Guinan, J. J., Warr, W. B. & Norris, B. E. J. comp. Neurol. 221, 358–370 (1983).

  17. 17

    Spoendlin, H. Acta Otolaryngol. (Stockholm) 67, 239–254 (1969).

  18. 18

    Dallos, P. & Harris, D. M. J. Neurophysiol. 41, 365–383 (1978).

  19. 19

    Dallos, P. in Auditory Function (eds Edelman G. M., Gall W. E. & Cowan W. M. 153–188 (J. Wiley, New York, 1988).

  20. 20

    Brownell, W. E. & Kachar, B. in Peripheral Auditory Mechanisms (eds Allen J. B., Hall J. L., Hubbard A., Neely S. T. & Tubis A.) 369–376 (Springer-Verlag, New York, 1986).

  21. 21

    Brownell, W. E. Ear and Hearing 11, 82–92 (1990).

  22. 22

    Jen, D. H. & Steele, C. R. J. acoust. Soc. Amer. 82, 1667–1678 (1987).

  23. 23

    Baylor, D. A., Lamb, T. D. & Yau, K.-W. J. Physiol., Lond. 288, 589–611 (1979).

  24. 24

    Holley, M. C. & Ashmore, J. F. J. Cell Sci 96, 283–291 (1990).

  25. 25

    Evans, B. N. thesis, Univ. Texas Health Sciences Center, Houston (1988).

  26. 26

    Clark, B. A., Hallworth, R. & Evans, B. N. Pflügers Arch. 415, 490–493 (1990).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Dallos, P., Evans, B. & Hallworth, R. Nature of the motor element in electrokinetic shape changes of cochlear outer hair cells. Nature 350, 155–157 (1991) doi:10.1038/350155a0

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.