Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Magnetoresistance from quantum interference effects in ferromagnets

An Addendum to this article was published on 30 November 2000


The desire to maximize the sensitivity of read/write heads (and thus the information density) of magnetic storage devices has stimulated interest in the discovery and design of new magnetic materials exhibiting magnetoresistance. Recent discoveries include the ‘colossal’ magnetoresistance in the manganites1,2,3,4 and the enhanced magnetoresistance in low-carrier-density ferromagnets4,5,6. An important feature of these systems is that the electrons involved in electrical conduction are different from those responsible for the magnetism. The latter are localized and act as scattering sites for the mobile electrons, and it is the field tuning of the scattering strength that ultimately gives rise to the observed magnetoresistance. Here we argue that magnetoresistance can arise by a different mechanism in certain ferromagnets—quantum interference effects rather than simple scattering. The ferromagnets in question are disordered, low-carrier-density magnets where the same electrons are responsible for both the magnetic properties and electrical conduction. The resulting magnetoresistance is positive (that is, the resistance increases in response to an applied magnetic field) and only weakly temperature-dependent below the Curie point.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Phase diagram of Fe1-xMnxSi and Fe1-yCoySi.
Figure 2: Temperature dependence.
Figure 3: Field dependence of magnetoresistance and magnetization.
Figure 4: Magnetotransport.


  1. 1

    Searle,C. W. & Wang,S. T. Studies of the ionic ferromagnet (LaPb)MnO3. III Ferromagnetic resonance studies. Can. J. Phys. 47, 2703–2708 ( 1969).

    CAS  Article  ADS  Google Scholar 

  2. 2

    Jin,S. et al. Thousandfold change change in the resistivity in magnetoresistive La-Ca-Mn-O films. Science 264, 413– 415 (1994).

    CAS  Article  ADS  Google Scholar 

  3. 3

    Tokura,Y. et al. Origins of colossal magnetoresistance in perovskite-type manganese oxides. J. Appl. Phys. 79, 5288– 5291 (1996).

    Google Scholar 

  4. 4

    Shimakawa,Y., Kubo,Y. & Manako,T. Giant magnetoresistance in Tl2Mn2O7 with the pyrochlore structure. Nature 379, 53 –55 (1996).

    CAS  Article  ADS  Google Scholar 

  5. 5

    Ramirez,A. P. & Subramanian,M. A. Large enhancement of magnetoresistance in Tl2Mn2O7: pyrochlore versus perovskite. Science 277, 546–549 (1997).

    CAS  Article  Google Scholar 

  6. 6

    Majumdar,P. & Littlewood,P. B. Dependence of magnetoresistivity on charge-carrier density in metallic ferromagnets and doped magnetic semiconductors. Nature 395, 479–481 (1998).

    CAS  Article  ADS  Google Scholar 

  7. 7

    Aeppli,G. & Fisk,Z. Kondo insulators. Comments Condens. Matter Phys. 16, 155–165 (1992).

    CAS  Google Scholar 

  8. 8

    Wernick,J. H., Wertheim,G. K. & Sherwood, R. C. Magnetic behavior of the monosilicides of the 3d-transition elements. Mater. Res. Bull. 7, 1431– 1441 (1972).

    CAS  Article  Google Scholar 

  9. 9

    Jaccarino,V., Wertheim,G. K., Wernick,J. H., Walker,L. R. & Arajs,S. Paramagnetic excited state of FeSi. Phys. Rev. 160, 476–482 (1967).

    CAS  Article  ADS  Google Scholar 

  10. 10

    Schlesinger,Z. et al. Unconventional charge gap formation in FeSi. Phys. Rev. Lett. 71, 1748–1751 (1993).

    CAS  Article  ADS  Google Scholar 

  11. 11

    van der Marel,D., Damascelli,A., Schulte,K. & Menovsky,A. A. Spin, charge, and bonding in transition metal mono-silicides. Physica B 244, 138–147 ( 1998).

    CAS  Article  ADS  Google Scholar 

  12. 12

    DiTusa,J. F. et al. Metal-insulator transitions in the Kondo insulator FeSi and classic semiconductors are similar. Phys. Rev. Lett. 78, 2831(1997); erratum 78, 4309 (1997).

    CAS  Article  ADS  Google Scholar 

  13. 13

    Chernikov,M. A. et al. Low-temperature transport, optical, magnetic, and thermodynamic properties of Fe1-xCoxSi. Phys. Rev. B 56, 1366–1375 (1997).

    CAS  Article  ADS  Google Scholar 

  14. 14

    Moriya,T. Spin Fluctuations in Itinerant Electron Magnetism (ed. Fulde, P.) (Springer, Berlin/Heidelberg/New York/Tokyo, 1985).

    Book  Google Scholar 

  15. 15

    Beille,J., Voiron,J. & Roth,M. Long period helimagnetism in the cubic B20 FexCo1- xSi and CoxMn1-xSi alloys. Solid State Commun. 47, 399–402 (1983).

    CAS  Article  ADS  Google Scholar 

  16. 16

    Ishimoto,K., Ohashi,M., Yamauchi,H. & Yamaguchi,Y. Itinerant electron ferromagnetism in Fe0.8Co0.2Si studied by polarized neutron diffraction. J. Phys. Soc. Jpn 61, 2503–2511 (1992).

    CAS  Article  ADS  Google Scholar 

  17. 17

    Kawarazaki,S., Yasuoka,H., Nakamura,Y. & Wernick,J. H. Magnetic properties of (Fe1-xCox)Si. J. Phys. Soc. Jpn 41, 1171 (1976).

    CAS  Article  ADS  Google Scholar 

  18. 18

    Paschen,S., Pushin,D., Ott,H. R., Young,D. P. & Fisk,Z. Magnetism and electrical transport in Fe0.9TM 0.1Si, TM = Co, Rh, Ru. Physica B 259–261 , 864–865 (1999).

    Article  ADS  Google Scholar 

  19. 19

    Ueda,K. Effect of a magnetic field on spin fluctuations in weakly ferromagnetic metals. Solid State Commun. 19, 965–968 (1976).

    CAS  Article  ADS  Google Scholar 

  20. 20

    Kadowaki,K., Okuda,K. & Date,M. Magnetization and magnetoresistance of MnSi. I. J. Phys. Soc. Jpn 51, 2433–2438 ( 1982).

    CAS  Article  ADS  Google Scholar 

  21. 21

    Hwang,H., Cheong,S.-W., Ong,N. P. & Batlogg,B. Spin-polarized intergrain tunneling in La2/3Sr1/3MnO3. Phys. Rev. Lett. 77, 2041–2044 (1996).

    CAS  Article  ADS  Google Scholar 

  22. 22

    Campbell,I. A. & Fert,A. Ferromagnetic Materials Vol. 3 (ed. Wohlfarth, E. P.) 751– 804 (North-Holland, Amsterdam, 1982).

    Google Scholar 

  23. 23

    Xu,R. et al. Large magnetoresistance in non-magnetic silver chalcogenides. Nature 390, 57–60 ( 1997).

    CAS  Article  ADS  Google Scholar 

  24. 24

    Lee,P. A. & Ramakrishnan,T. V. Disordered electronic systems. Rev. Mod. Phys. 57, 287– 337 (1985).

    CAS  Article  ADS  Google Scholar 

  25. 25

    Al’tshuler,B. L., Aronov,A. G., Gershenson, M. E. & Sharvin,Yu. V. Quantum effects in disordered metal films. Sov. Sci. Rev. A Phys. 9, 223–354 ( 1987).

    Google Scholar 

  26. 26

    Rosenbaum,T. F. et al. Metal-insulator transition in a doped semiconductor. Phys. Rev. B 27, 7509–7523 (1983).

    CAS  Article  ADS  Google Scholar 

  27. 27

    Millis,A. J. & Lee,P. A. Spin-orbit and paramagnon effects on magnetoconductance and tunneling. Phys. Rev. B 30 , 6170–6173 (1984); erratum 31, 5523–5524 (1985).

    Article  Google Scholar 

  28. 28

    Ishikawa,Y., Tajima,K., Bloch,D. & Roth,M. Helical spin structure in manganese silicide MnSi. Solid State Commun. 19, 525–528 (1976).

    CAS  Article  ADS  Google Scholar 

Download references


We thank E. Abrahams, P.W. Adams, D.A. Browne, P. Littlewood and A. Ruckenstein for discussions. J.F.D. acknowledges the support of the Louisiana Board of Regents. J.F.D. and Z.F. acknowledge the support of the National Science Foundation.

Author information



Corresponding author

Correspondence to J. F. DiTusa.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Manyala, N., Sidis, Y., DiTusa, J. et al. Magnetoresistance from quantum interference effects in ferromagnets. Nature 404, 581–584 (2000).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing