Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Evidence of atmospheric sulphur in the martian regolith from sulphur isotopes in meteorites

Abstract

Sulphur is abundant at the martian surface, yet its origin and evolution over time remain poorly constrained1,2. This sulphur is likely to have originated in atmospheric chemical reactions, and so should provide records of the evolution of the martian atmosphere, the cycling of sulphur between the atmosphere and crust, and the mobility of sulphur in the martian regolith3,4,5,6. Moreover, the atmospheric deposition of oxidized sulphur species could establish chemical potential gradients in the martian near-surface environment, and so provide a potential energy source for chemolithoautotrophic organisms7. Here we present measurements of sulphur isotopes in oxidized and reduced phases from the SNC meteorites—the group of related achondrite meteorites believed to have originated on Mars—together with the results of laboratory photolysis studies of two important martian atmospheric sulphur species (SO2 and H2S). The photolysis experiments can account for the observed sulphur-isotope compositions in the SNC meteorites, and so identify a mechanism for producing large abiogenic 34S fractionations in the surface sulphur reservoirs. We conclude that the sulphur data from the SNC meteorites reflects deposition of oxidized sulphur species produced by atmospheric chemical reactions, followed by incorporation, reaction and mobilization of the sulphur within the regolith.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Frequency plot Δ33S for SNC meteorites relative to that observed for other meteorites.
Figure 2: Three isotope plots for photolysis of SO2 and H2S.
Figure 3: Links in the martian sulphur cycle consistent with the SNC sulphur-isotope data.

Similar content being viewed by others

References

  1. Rieder, R. et al. The chemical composition of Martian soil and rocks returned by the mobile alpha proton x-ray spectrometer: Preliminary results from the x-ray mode. Science 278, 1771– 1774 (1997).

    Article  ADS  CAS  Google Scholar 

  2. Clark, B. C. et al. Chemical composition of Martian fines. J. Geophys. Res. 87, 10059–10067 ( 1982).

    Article  ADS  CAS  Google Scholar 

  3. Newsom, H. E., Hagerty, J. J. & Goff, F. Mixed hydrothermal fluids and the origin of the Martian soil. J. Geophys. Res. 104, 8717– 8728 (1999).

    Article  ADS  CAS  Google Scholar 

  4. Toulmin, P III . et al. Geochemical and mineralogical interpretation of the Viking inorganic chemical results. J. Geophys. Res. 82, 4625–4634 (1977).

    Article  ADS  CAS  Google Scholar 

  5. Settle, M. & Greeley, R. Formation and deposition of volcanic sulfate aerosols on Mars. J. Geophys. Res. 84, 8343–8354 (1979).

    Article  ADS  CAS  Google Scholar 

  6. Banin, A., Han, F. X., Kan, I. & Cicelsky, A. Acidic volatiles and the Mars soil. J. Geophys. Res. 102, 13341–13356 (1997).

    Article  ADS  CAS  Google Scholar 

  7. Jakosky, B. M. & Shock, E. L. The biological potential of Mars, the early Earth, and Europa. J. Geophys. Res. 103, 19359–19364 (1998).

    Article  ADS  CAS  Google Scholar 

  8. Bogard, D. D. & Johnson, P. Martian gases in an Antarctic meteorite? Science 221, 651–654 (1983).

    Article  ADS  CAS  Google Scholar 

  9. Farquhar, J., Thiemens, M. H. & Jackson, T. Atmosphere-surface interactions on Mars: Δ17O measurements of carbonate from ALH 84001. Science 280, 1580–1582 (1998).

    Article  ADS  CAS  Google Scholar 

  10. Greenwood, J. P., Riciputi, L. R., McSween, H. Y., Jr. & Taylor, L. A. Modified sulphur isotopic compositions of sulfides in the nakhlites and Chassigny. Geochim. Cosmochim. Acta (in the press).

  11. Shearer, C. K., Layne, G. D., Papike, J. J. & Spilde, M. N. Sulphur isotopic systematics in alteration assemblages in martian meteorite Allan Hills 84001. Geochim. Cosmochim. Acta 60, 2921–2926 (1996).

    Article  ADS  CAS  Google Scholar 

  12. Pollack, J. B. et al. Thermal emission spectra of Mars (5.4-10.5 µm) - Evidence for sulfates, carbonates, and hydrates. J. Geophys. Res. 95, 14595–14627 (1990).

    Article  ADS  Google Scholar 

  13. McSween, H. Y. & Harvey, R. P. An evaporation model for formation of carbonates in the ALH84001 Martian meteorite. Int. Geol. Rev. 40, 774–783 (1998).

    Article  Google Scholar 

  14. Warren, P. H. Petrologic evidence for low-temperature, possibly flood evaporitic origin of carbonates in the ALH84001 meteorite. J. Geophys. Res. 103, 16759–16773 (1998).

    Article  ADS  CAS  Google Scholar 

  15. Gao, X. & Thiemens, M. H. Systematic study of sulphur isotopic composition in iron meteorites and the occurrence of excess 33S and 36S. Geochim. Cosmochim. Acta 55, 2671–2679 (1991).

    Article  ADS  CAS  Google Scholar 

  16. Gao, X. & Thiemens, M. H. Isotopic composition and concentration of sulphur in carbonaceous chondrites. Geochim. Cosmochim. Acta 57, 3159–3169 ( 1993).

    Article  ADS  CAS  Google Scholar 

  17. Gao, X. & Thiemens, M. H. Variations of the isotopic composition of sulphur in enstatite and ordinary chondrites. Geochim. Cosmochim. Acta 57, 3171–3176 ( 1993).

    Article  ADS  CAS  Google Scholar 

  18. Cooper, G. W., Thiemens, M. H., Jackson, T. L. & Chang, S. Sulphur and hydrogen isotope anomalies in meteorite sulfonic acids. Science 277, 1072–1074 ( 1997).

    Article  ADS  CAS  Google Scholar 

  19. Thiemens, M. H. Atmosphere science - Mass-independent isotope effects in planetary atmospheres and the early solar system. Science 283, 341–345 (1999).

    Article  ADS  CAS  Google Scholar 

  20. Farquhar, J., Thiemens, M. H. & Jackson, T. L. Δ17O Anomalies in carbonate from Nakhla and Lafayette and Δ33S anomalies in sulphur from Nakhla: Implications for atmospheric chemical interactions with the Martian regolith. 30th Lunar Planet. Sci. Conf. 30, 1675 (1999).

    ADS  Google Scholar 

  21. Karlsson, H. R., Clayton, R. N., Gibson, E. K. & Mayeda, T. K. Water in SNC meteorites - evidence for a martian hydrosphere. Science 255, 1409–1411 ( 1992).

    Article  ADS  CAS  Google Scholar 

  22. Colman, J. J., Xu, X. P., Thiemens, M. H. & Trogler, W. C. Photopolymerization and mass-independent sulphur isotope fractionations in carbon disulfide. Science 273, 774– 776 (1996).

    Article  ADS  CAS  Google Scholar 

  23. Wanke, H. & Dreibus, G. Chemistry and accretion history of Mars. Phil. Trans R. Soc. Lond. A. 349, 285–293 (1994).

    Article  ADS  Google Scholar 

  24. Mukhin, L. M., Koscheev, A. P., Dikov, Y. P., Huth, J. & Wanke, H. Experimental simulations of the photodecomposition of carbonates and sulphates on Mars. Nature 379, 141–143 (1996).

    Article  ADS  CAS  Google Scholar 

  25. Yung, Y. L., Nair, H. & Gerstell, M. F. CO2 greenhouse in the early Martian atmosphere: SO2 inhibits condensation. Icarus 130, 222– 224 (1997).

    Article  ADS  CAS  Google Scholar 

  26. Kasting, J. F., Pollack, J. B. & Crisp, D. Effects of high CO2 levels on surface temperature and atmospheric oxidation state of the early Earth. J. Atmos. Chem. 1, 403– 428 ( 1984).

    Article  CAS  Google Scholar 

  27. Harvey, R. P. & McSween, H. Y. Petrogenesis of the Nakhlite meteorites - evidence from cumulate mineral zoning. Geochim. Cosmochim. Acta 56, 1655–1663 ( 1992).

    Article  ADS  CAS  Google Scholar 

  28. Greenwood, J. P., Riciputi, L. R. & McSween, H. Y., Jr. Sulfide isotopic compositions in shergottites and ALH84001, and possible implications for life on Mars. Geochim. Cosmochim. Acta 61, 4449– 4453 (1997).

    Article  ADS  CAS  Google Scholar 

  29. Okabe, H. Photochemistry of Small Molecules (Wiley, New York, 1978).

    Google Scholar 

Download references

Acknowledgements

We thank M. Grady, G. McPherson, and M. Lindstrom for access to samples used in this study. We also thank H. McSween and H. Newsom for comments and criticisms. This research was supported by the NSF, Calspace and NASA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Farquhar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farquhar, J., Savarino, J., Jackson, T. et al. Evidence of atmospheric sulphur in the martian regolith from sulphur isotopes in meteorites . Nature 404, 50–52 (2000). https://doi.org/10.1038/35003517

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35003517

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing