Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Direct protein–protein coupling enables cross-talk between dopamine D5 and γ-aminobutyric acid A receptors

Abstract

GABAA (γ-aminobutyric-acid A) and dopamine D1 and D5 receptors represent two structurally and functionally divergent families of neurotransmitter receptors. The former comprises a class of multi-subunit ligand-gated channels mediating fast interneuronal synaptic transmission, whereas the latter belongs to the seven-transmembrane-domain single-polypeptide receptor superfamily that exerts its biological effects, including the modulation of GABAA receptor function, through the activation of second-messenger signalling cascades by G proteins. Here we show that GABAA-ligand-gated channels complex selectively with D5 receptors through the direct binding of the D5 carboxy-terminal domain with the second intracellular loop of the GABAA γ2(short) receptor subunit. This physical association enables mutually inhibitory functional interactions between these receptor systems. The data highlight a previously unknown signal transduction mechanism whereby subtype-selective G-protein-coupled receptors dynamically regulate synaptic strength independently of classically defined second-messenger systems, and provide a heuristic framework in which to view these receptor systems in the maintenance of psychomotor disease states.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Association of D5 and GABAA receptors in rat brain and in vitro.
Figure 2: Selective modulation of dopamine-mediated D5 receptor-stimulated cAMP accumulation by GABAA α1β2γ2 receptors in co-expressed HEK-293 cells.
Figure 3: GABAA receptor modulation of D5 cAMP production is dependent on γ2 subunit and D5-CT sequences in co-expressed cells.
Figure 4: D5 receptor regulation of GABAA-receptor-mediated whole-cell currents in co-transfected HEK-293 cells.
Figure 5: Co-localization of GABAA and dopamine D5 receptors in cultured hippocampal neurons.
Figure 6: Dopamine D5 receptors modify GABAA-receptor-mediated synaptic responses in hippocampal neurons.

Similar content being viewed by others

References

  1. Dohlman, H. G., Thorner, J., Caron, M. G. & Lefkowitz, R. J. Model systems for the study of seven transmembrane segment receptors. Annu. Rev. Biochem. 60, 653–688 (1991).

    Article  CAS  PubMed  Google Scholar 

  2. Unwin, N. Neurotransmitter action: opening of ligand gated ion channels. Cell 72 (suppl.), 653–688 (1991).

    Google Scholar 

  3. Neer, E. J. Heterotrimeric G proteins: organizers of transmembrane signals. Cell 80, 249–257 ( 1995).

    Article  CAS  PubMed  Google Scholar 

  4. McDonald, R. L. & Olsen, R. W. GABAA receptor channels. Annu. Rev. Neurosci. 17, 569–602 (1994).

    Article  Google Scholar 

  5. Mody, I., DeKoninck, Y., Otis, T. S. & Soltesz, I. Bridging the cleft at GABA synapses in the brain. Trends Neurosci. 17, 517–525 ( 1994).

    Article  CAS  PubMed  Google Scholar 

  6. Barnard, E. et al. Subtypes of GABAA receptors: classification on the basis of subunit structure and receptor function. Pharmacol. Rev. 50, 291–313 ( 1998).

    CAS  PubMed  Google Scholar 

  7. Costa, E. From GABA receptor diversity emerges a unified vision of GABAergic inhibition. Annu. Rev. Pharmacol. Toxicol. 38, 321– 350 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. McKernan, R. M. & Whiting, P. J. Which GABA A receptor subtypes really occur in the brain? Trends Neurosci. 19, 139–143 ( 1996).

    Article  CAS  PubMed  Google Scholar 

  9. Tretter, V., Ehya, N., Fuchs, K. & Sieghart, W. Stoichiometry and assembly of a recombinant GABAA receptor subtype. J. Neurosci. 17, 2728–2737 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Missale, C., Nash, S. R., Robinson, S. W., Jaber, M. & Caron, M. G. Dopamine receptors: from structure to function. Physiol. Rev. 78, 189– 225 (1998).

    Article  CAS  PubMed  Google Scholar 

  11. Sunahara, R. K. et al. Human dopamine D1 receptor encoded by an intronless gene on chromosome 5. Nature 347, 80– 83 (1990).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Sunahara, R. K. et al. Cloning of a gene for a human dopamine D5 receptor with higher affinity for dopamine than D1. Nature 350, 614–619 (1991).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Niznik, H. B., Sugamori, K. S., Clifford, J. J. & Waddington, J. L. in Handbook of Experimental Pharmacology—Dopamine in the CNS. (ed. Di Chiara, G.) (Springer, Berlin, in the press).

  14. Sidhu, A. Coupling of D1 and D5 dopamine receptors to multiple G proteins. Mol. Neurobiol. 16, 125–134 (1998).

    Article  CAS  PubMed  Google Scholar 

  15. Sibley, D. R. New insights into dopaminergic function using anti-sense and genetically altered animals. Annu. Rev. Pharmacol. Toxicol. 39, 313–341 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. Smart, T. G. Regulation of excitatory and inhibitory neurotransmitter-gated ion channels by protein phosphorylation. Curr. Opin. Neurobiol. 7, 358–367 (1997).

    Article  CAS  PubMed  Google Scholar 

  17. Poisbeau, P., Cheney, M. C., Browning, M. D. & Mody, I. Modulation of synaptic GABAA receptor function by PKA and PKC in adult hippocampal neurons. J. Neurosci. 19, 674–683 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Swope, S. L., Moss, S. I., Raymond, L. A. & Huganir, R. L. Regulation of ligand gated ion channels by protein phosphorylation. Adv. Second Messenger Phosphoprot. Res. 33, 49– 78 (1999).

    Article  CAS  Google Scholar 

  19. Yan, Z. & Surmeier, D. J. D5 dopamine receptors enhance Zn2+ sensitive GABAA currents in striatal cholinergic interneurons through a PKA/PP1 cascade. Neuron 19, 1115–1126 (1997).

    Article  CAS  PubMed  Google Scholar 

  20. Radnikow, G. & Misgeld, U. Dopamine D1 receptors facilitate GABAA synaptic currents in the rat subtantia nigra pars reticulata. J. Neurosci. 18, 2009– 2016 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Moniyama, T. & Sim, J. A. Modulation of inhibitory transmission by dopamine in rat basal forebrain nuclei: activation of presynaptic D1 like dopaminergic receptors. J. Neurosci. 16, 7502–7512 (1996).

    Google Scholar 

  22. Brunig, I., Sommer, M., Hatt, H. & Bormann, J. Dopamine receptor subtypes modulate olfactory bulb γ-aminobutyric acid type A receptors. Proc. Natl Acad. Sci. USA 96, 2456– 2460 (1999).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bergson, C. et al. Regional cellular and subcellular variations in the distribution of D1 and D5 dopamine receptors in primate brain. J. Neurosci. 15, 7821–7836 ( 1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Buhl, E. H., Halasy, K. & Somogyi, P. Diverse sources of hippocampal unitary inhibitory postsynaptic potentials and the number of postsynaptic release sites. Nature 368, 823–828 ( 1994).

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Nusser, Z., Roberts, J. D. B., Baude, A., Richards, J. G. & Somogyi, P. Immunocytochemical localization of α1 and β2/3 subunits of the GABAA receptor in relation to specific GABAergic synapses in the dendate gyrus. Eur. J. Neurosci. 7, 630–636 ( 1995).

    Article  CAS  PubMed  Google Scholar 

  26. Hall, R. A., Premont, R. T. & Lefkowitz, R. J. Heptahelical receptor signalling: beyond the G-protein paradigm. J. Cell Biol. 145, 927– 932 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sperk, G., Schwarzer, C., Tsunashima, K., Fuchs, K. & Sieghart, W. GABAA receptor subunits in the rat hippocampus: I. Immunocytochemical distribution of 13 subunits. Neuroscience 80, 987–1000 (1997).

    Article  CAS  PubMed  Google Scholar 

  28. Essrich, C., Lorez, M., Berson, J. A., Fritschy, J.-M. & Luscher, B. Postsynaptic clustering of major GABAA receptor subtypes requires the γ2 subunit and gephyrin. Nature Neurosci. 1, 563–571 ( 1998).

    Article  CAS  PubMed  Google Scholar 

  29. Wang, H., Bedford, F. K., Brandon, N. J., Moss, S. J. & Olsen, R. W. GABAA-receptor-associated protein links GABAA receptors and the cytoskeleton. Nature 397, 69–72 ( 1999).

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Gorrie, G. H. et al. Assembly of GABAA receptors composed of α1 and β2 subunits in both cultured neurons and fibroblasts. J. Neurosci. 17, 6587–6596 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wan, Q. et al. Modulation of GABAA receptor function by tyrosine phosphorylation of β subunits. J. Neurosci. 17, 5062–5069 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Luttrell, L. M., Ostrowski, J., Cotecchia, S., Kendall, H. & Lefkowitz, R. J. Antagonism of catecholamine receptor signaling by expression of cytoplasmic domains of the receptors. Science 259, 1453–1557 (1993).

    Article  ADS  CAS  PubMed  Google Scholar 

  33. Sugamori, K. S., Scheideler, M. A., Vernier, P. & Niznik, H. B. Dopamine D1B receptor chimeras reveal modulation of partial agonist activity by carboxyl terminal tail sequences. J. Neurochem. 71, 2593–2599 (1998).

    Article  CAS  PubMed  Google Scholar 

  34. McDonald, B. J. et al. Adjacent phosphorylation sites on GABAA receptor β-subunits determine regulation by cAMP-dependent protein kinase. Nature Neurosci. 1, 23–28 (1998 ).

    Article  CAS  PubMed  Google Scholar 

  35. Hebert, T. E. & Bouvier, M. Structural and functional aspects of GPCR oligomerization. Biochem. Cell Biol. 76, 1–11 (1998).

    Article  CAS  PubMed  Google Scholar 

  36. Marshall, F. H., Jones, K. A., Kaupmann, K. & Bettler, B. GABAA receptors—the first 7TM heterodimers. Trends Pharmacol. Sci. 10, 369–399 (1999).

    Google Scholar 

  37. Jordan, B. A. & Devi, L. A. G-protein coupled receptor heterodimerization modulates receptor function. Nature 399, 697–700 (1999).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  38. Benes, F. M. The role of stress and dopamine-GABA interactions in the vulnerability for schizophrenia. J. Psychiat. Res. 31, 257 –275 (1997).

    Article  ADS  CAS  PubMed  Google Scholar 

  39. Huntsman, M. M., Tran, B.-V., Potkin, S. G., Bunney, W. E. Jr & Jones, E. G. Altered ratios of alternatively spliced long and short γ2 subunit mRNAs of the GABA A receptor in prefrontal cortex of schizophrenics. Proc. Natl Acad. Sci. USA 95, 15066–15071 (1998).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  40. Keverne, E. B. GABA-ergic neurons and the neurobiology of schizophrenia and other psychosis. Brain Res. Bull. 48, 467– 473 (1999).

    Article  CAS  PubMed  Google Scholar 

  41. Okubo, Y. et al. Decreased prefrontal dopamine D1 receptors in schizophrenia revealed by PET. Nature 385, 634– 636 (1997).

    Article  ADS  CAS  PubMed  Google Scholar 

  42. Goldman-Rakic, P. S. & Selemon, L. D. Functional and anatomical aspects of prefrontal pathology in schizophrenia. Schizo. Bull. 23, 437–458 (1997).

    Article  CAS  Google Scholar 

  43. Moore, H. West, A. R. & Grace, A. A. The regulation of forebrain dopamine transmission. Biol. Psychiat. 46, 40– 55 (1999).

    Article  CAS  PubMed  Google Scholar 

  44. Ng, G. Y. K. et al. Agonist induced desensitization of dopamine D1 receptor stimulated adenylyl cyclase activity is temporally and biochemically separated from D1 receptor internalization. Proc. Natl Acad. Sci. USA 92, 10157–10161 (1995).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  45. Nusser, Z., Hajos, N., Somogyi, P. & Mody, I. Increased number of synaptic GABAA receptors underlies potentiation at hippocampal inhibitory synapse. Nature 395, 172– 177 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  46. Wan, Q. et al. Recruitment of functional GABAA receptors to postsynaptic domains by insulin. Nature 388, 686– 690 (1997).

    Article  ADS  CAS  PubMed  Google Scholar 

  47. Kneussel, M. et al. Loss of postsynaptic GABAA receptor clustering in gephyrin deficient mice. J. Neurosci. 19, 9289–9297 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hall, R. A. et al. The β2 adrenergic receptor interactions with the Na+/H+-exchanger regulatory factor to control Na+/H+ exchange. Nature 392, 626–630 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  49. Yu, X.-M. & Salter, M. W. Gain control of NMDA receptor currents by intracellular sodium. Nature 396, 469–474 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. Braunton, K. M. Zhu and H. Y. Man for technical assistance. This work was supported by grants from NIDA, the Ontario Mental Health Foundation (H.B.N.) and the MRC of Canada (H.B.N., X.M.Y., Y.T.W.). F.L. was supported by a C. Cleghorn Fellowship in Schizophrenia Research and is a fellow of the Canadian Psychiatric Research Foundation; Z.B.P. is a NARSAD Young Investigator. X.M.Y. is an MRC Scholar and Y.T.W. is a Research Scholar of the Heart and Stroke Foundation of Canada. H.B.N. was supported in part by the C.B. Ireland Endowed Fund for Psychiatric Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyman B. Niznik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, F., Wan, Q., Pristupa, Z. et al. Direct protein–protein coupling enables cross-talk between dopamine D5 and γ-aminobutyric acid A receptors. Nature 403, 274–280 (2000). https://doi.org/10.1038/35002014

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35002014

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing