Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Genetic ablation reveals that the roof plate is essential for dorsal interneuron specification

Abstract

During neural development in vertebrates, a spatially ordered array of neurons is generated in response to inductive signals derived from localized organizing centres. One organizing centre that has been proposed to have a role in the control of neural patterning is the roof plate. To define the contribution of signals derived from the roof plate to the specification of neuronal cell types in the dorsal neural tube, we devised a genetic strategy to ablate the roof plate selectively in mouse embryos. Embryos without a roof plate lack all the interneuron subtypes that are normally generated in the dorsal third of the neural tube. Using a genetically based lineage analysis and in vitro assays, we show that the loss of these neurons results from the elimination of non-autonomous signals provided by the roof plate. These results reveal that the roof plate is essential for specifying multiple classes of neurons in the mammalian central nervous system.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Conditional expression of a diphtheria toxin gene in roof-plate cells.
Figure 2: Initial steps of dorsal neural patterning occur normally in Gdf7–DTA embryos.
Figure 4: Loss of dorsal neural progenitors in Gdf7–DTA embryos.
Figure 3: Gdf7–DTA embryos lack roof-plate cells. In wild-type embryos examined at E11.5 (a–d), roof-plate cells express Gdf7 (a), Bmp6 (b), Msx1 (c) and Wnt1 (d).
Figure 5: Absence of dorsal interneuron classes in Gdf7–DTA embryos.
Figure 6: Lineage relationship between dorsal midline cells and D1B neurons.
Figure 7: Roof-plate rescue of dorsal neural progenitors and dorsal interneurons in Gdf7–DTA neural tissue.

Similar content being viewed by others

References

  1. Harland, R. & Gerhart, J. Formation and function of Spemann's organizer. Annu. Rev. Cell. Dev. Biol. 13, 611–667 (1997).

    Article  CAS  PubMed  Google Scholar 

  2. Pearse, R. V. & Tabin, C. J. The molecular ZPA. J. Exp. Zool. 282, 677–690 (1998).

    Article  CAS  PubMed  Google Scholar 

  3. Martin, G. R. The roles of FGFs in the early development of vertebrate limbs. Genes Dev. 12, 1571–1586 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. Bei, M. & Maas, R. FGFs and BMP4 induce both Msx1-independent and Msx1-dependent signaling pathways in early tooth development. Development 125, 4325–4333 (1998).

    CAS  PubMed  Google Scholar 

  5. Shamim, H. et al. Sequential roles for Fgf4, En1 and Fgf8 in specification and regionalisation of the midbrain. Development 126, 945–959 (1999).

    CAS  PubMed  Google Scholar 

  6. Dodd, J., Jessell, T. M. & Placzek, M. The when and where of floor plate induction. Science 282, 1654–1657 ( 1998).

    Article  CAS  PubMed  Google Scholar 

  7. Lee, K. J. & Jessell, T. M. The specification of dorsal cell fates in the vertebrate central nervous system. Annu. Rev. Neurosci. 22, 261–294 ( 1999).

    Article  CAS  PubMed  Google Scholar 

  8. Liem, K. F. Jr, Tremml, G., Roelink, H. & Jessell, T. M. Dorsal differentiation of neural plate cells induced by BMP-mediated signals from epidermal ectoderm. Cell 82, 969–979 (1995).

    Article  CAS  PubMed  Google Scholar 

  9. Liem, K. F. Jr, Tremml, G. & Jessell, T. M. A role for the roof plate and its resident TGFβ-related proteins in neuronal patterning in the dorsal spinal cord. Cell 91, 127–138 ( 1997).

    Article  CAS  PubMed  Google Scholar 

  10. Lee, K. J., Mendelsohn, M. & Jessell, T. M. Neuronal patterning by BMPs: a requirement for GDF7 in the generation of a discrete class of commissural interneurons in the spinal cord. Genes Dev. 12, 3394– 3407 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Palmiter, R. D. et al. Cell lineage ablation in transgenic mice by cell-specific expression of a toxin gene. Cell 50, 435 –443 (1987).

    Article  CAS  PubMed  Google Scholar 

  12. Breitman, M. L. et al. Genetic ablation: targeted expression of a toxin gene causes microphthalmia in transgenic mice. Science 238, 1563–1565 (1987).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Grieshammer, U., Lewandoski, M., Prevette, D., Oppenheim, R. W. & Martin, G. R. Muscle-specific cell ablation conditional upon Cre-mediated DNA recombination in transgenic mice leads to massive spinal and cranial motoneuron loss. Dev. Biol. 197, 234–247 (1998).

    Article  CAS  PubMed  Google Scholar 

  14. Maxwell, I. H., Maxwell, F. & Glode, L. M. Regulated expression of a diphtheria toxin A-chain gene transfected into human cells: possible strategy for inducing cancer cell suicide. Cancer Res. 46, 4660–4664 (1986).

    CAS  PubMed  Google Scholar 

  15. Rajewsky, K. et al. Conditional gene targeting. J. Clin. Invest. 98, 600–603 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sauer, B. Inducible gene targeting in mice using the Cre/lox system. Methods 14, 381–392 ( 1998).

    Article  CAS  PubMed  Google Scholar 

  17. Dietrich, P., Dragatsis, I., Xuan, S., Zeitlin, S. & Efstratiadis, A. Conditional mutagenesis in mice with heat shock promoter-driven cre transgenes. Mamm. Genome (in the press).

  18. Christians, E., Campion, E., Thompson, E. M. & Renard, J. P. Expression of the HSP 70. 1 gene, a landmark of early zygotic activity in the mouse embryo, is restricted to the first burst of transcription. Development 121, 113–122 (1995).

    CAS  PubMed  Google Scholar 

  19. Lyons, K. M., Hogan, B. L. & Robertson, E. J. Colocalization of BMP 7 and BMP 2 RNAs suggests that these factors cooperatively mediate tissue interactions during murine development. Mech. Dev. 50, 71–83 (1995).

    Article  CAS  PubMed  Google Scholar 

  20. Dudley, A. T. & Robertson, E. J. Overlapping expression domains of bone morphogenetic protein family members potentially account for limited tissue defects in BMP7 deficient embryos. Dev. Dyn. 208, 349–362 (1997).

    Article  CAS  PubMed  Google Scholar 

  21. Parr, B. A., Shea, M. J. & McMahon, A. P. Mouse Wnt genes exhibit discrete domains of expression in its early embryonic CNS and limb buds. Development 119, 247–261 (1993).

    CAS  PubMed  Google Scholar 

  22. Hill, R. E. et al. A new family of mouse homeo box-containing genes: molecular structure, chromosomal location, and developmental expression of Hox-7. 1. Genes Dev. 3, 26–37 (1989).

    Article  CAS  PubMed  Google Scholar 

  23. Robert, B., Sassoon, D., Jacq, B., Gehring, W. & Buckingham, M. Hox7, a mouse homeobox gene with a novel pattern of expression during embryogenesis. EMBO J. 8, 91–100 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nagai, T. et al. The expression of the mouse Zic1, Zic2, and Zic3 genes suggests an essential role for Zic genes in body pattern formation. Dev. Biol. 182, 299–313 ( 1997).

    Article  CAS  PubMed  Google Scholar 

  25. Dickinson, M. E., Selleck, M. A., McMahon, A. P. & Bronner, F. M. Dorsalization of the neural tube by the non-neural ectoderm. Development 121, 2099–2106 ( 1995).

    CAS  PubMed  Google Scholar 

  26. Selleck, M. & Bronner-Fraser, M. Origins of the avian neural crest; the role of neural plate–epidermal interactions. Development 121, 525–538 (1995).

    CAS  PubMed  Google Scholar 

  27. Labosky, P. A. & Kaestner, K. H. The winged helix transcription factor Hfh2 is expressed in neural crest and spinal cord during mouse development. Mech. Dev. 76, 185–190 (1998).

    Article  CAS  PubMed  Google Scholar 

  28. Ma, Q., Fode, C., Guillemot, F. & Anderson, D. J. Neurogenin1 and neurogenin2 control two distinct waves of neurogenesis in developing dorsal root ganglia. Genes Dev. 13, 1717– 1728 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jones, C. M., Lyons, K. M. & Hogan, B. L. Involvement of Bone Morphogenetic Protein-4 (BMP-4) and Vgr-1 in morphogenesis and neurogenesis in the mouse. Development 111, 531–542 ( 1991).

    CAS  PubMed  Google Scholar 

  30. Arkell, R. & Beddington, R. S. P. BMP7 influences pattern and growth of the developing hindbrain of mouse embryos. Development 124, 1–12 ( 1997).

    CAS  PubMed  Google Scholar 

  31. Roelink, H. & Nusse, R. Expression of two members of the Wnt family during mouse development: restricted temporal and spatial patterns in the developing neural tube. Genes Dev. 5, 381–388 (1991).

    Article  CAS  PubMed  Google Scholar 

  32. Snow, D. M., Steindler, D. A. & Silver, J. Molecular and cellular characterization of the glial roof plate of the spinal cord and optic tectum: a possible role for a proteoglycan in the development of an axon barrier. Dev. Biol. 138 , 359–376 (1990).

    Article  CAS  PubMed  Google Scholar 

  33. Ericson, J., Morton, S., Kawakami, A., Roelink, H. & Jessell, T. M. Two critical periods of Sonic Hedgehog signaling required for the specification of motor neuron identity. Cell 87, 661–673 (1996).

    Article  CAS  PubMed  Google Scholar 

  34. Dickinson, M. E., Krumlauf, R. & McMahon, A. P. Evidence for a mitogenic effect of Wnt-1 in the developing mammalian central nervous system. Development 120, 1453–1471 (1994).

    CAS  PubMed  Google Scholar 

  35. Ikeya, M., Lee, S. M. K., Johnson, J. E., McMahon, A. P. & Takada, S. Wnt signalling required for expansion of neural crest and CNS progenitors. Nature 389, 966–970 (1997).

    Article  ADS  CAS  PubMed  Google Scholar 

  36. Ericson, J. et al. Pax6 controls progenitor cell identity and neuronal fate in response to graded Shh signaling. Cell 90, 169–180 (1997).

    Article  CAS  PubMed  Google Scholar 

  37. Akazawa, C., Ishibashi, M., Shimizu, C., Nakanishi, S. & Kageyama, R. A mammalian helix–loop–helix factor structurally related to the product of the Drosophila proneural gene atonal is a positive transcriptional regulator expressed in the developing nervous system. J. Biol. Chem. 270, 8730– 8738 (1995).

    Article  CAS  PubMed  Google Scholar 

  38. Helms, A. W. & Johnson, J. E. Progenitors of dorsal commissural interneurons are defined by Math1 expression. Development 125, 919–928 (1998).

    CAS  PubMed  Google Scholar 

  39. Ma, Q., Kintner, C. & Anderson, D. J. Identification of neurogenin, a vertebrate neuronal determination gene. Cell 87, 43 –52 (1996).

    Article  CAS  PubMed  Google Scholar 

  40. Lo, L. C., Johnson, J. E., Wuenschell, C. W., Saito, T. & Anderson, D. J. Mammalian achaete-scute homolog 1 is transiently expressed by spatially restricted subsets of early neuroepithelial and neural crest cells. Genes Dev. 5, 1524 –1537 (1991).

    Article  CAS  PubMed  Google Scholar 

  41. Bronner-Fraser, M. & Fraser, S. E. Cell lineage analysis reveals multipotency of some avian neural crest cells. Nature 335, 161–164 ( 1988).

    Article  ADS  CAS  PubMed  Google Scholar 

  42. O'Gorman, S., Fox, D. T. & Wahl, G. M. Recombinase-mediated gene activation and site-specific integration in mammalian cells. Science 251, 1351–1355 (1991).

    Article  ADS  CAS  PubMed  Google Scholar 

  43. Tsien, J. Z. et al. Subregion- and cell type-restricted gene knockout in mouse brain. Cell 87, 1317–1326 (1996).

    Article  CAS  PubMed  Google Scholar 

  44. Soriano, P. Generalized lacZ expression with the ROSA26 Cre reporter strain. Nature Genet. 21, 70–71 (1999).

    Article  CAS  PubMed  Google Scholar 

  45. Yamaizumi, M., Mekada, E., Uchida, T. & Okada, Y. One molecule of diphtheria toxin fragment A introduced into a cell can kill the cell. Cell 15, 245–250 ( 1978).

    Article  CAS  PubMed  Google Scholar 

  46. Millonig, J. H., Millen, K. J. & Hatten, M. E. The mouse dreher gene (Lmx1a) controls formation of the roof plate in the vertebrate CNS. Nature 403, 764–769 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  47. Tanabe, Y. & Jessell, T. M. Diversity and pattern in the developing spinal cord. Science 274, 1115– 1123 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  48. Ding, Q. et al. Diminished Sonic hedgehog signaling and lack of floor plate differentiation in Gli2 mutant mice. Development 125, 2533 –2543 (1998).

    CAS  PubMed  Google Scholar 

  49. Matise, M. P., Epstein, D. J., Park, H. L., Platt, K. A. & Joyner, A. L. Gli2 is required for induction of floor plate and adjacent cells, but not most ventral neurons in the mouse central nervous system. Development 125, 2759–2770 (1998).

    CAS  PubMed  Google Scholar 

  50. Beattie, C. E. et al. Temporal separation in the specification of primary and secondary motoneurons in zebrafish. Dev. Biol. 187, 171–182 (1997).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank A. Efstratiadis for the Hs–cre strain; B. Han and M. Mendelsohn for help with cell culture and generation of mouse strains; S. Kaplan for technical assistance; D. Anderson, J. Johnson, K. Kaestner, A. Pierani, P. Soriano and E. Turner for mouse strains and reagents; J. Millonig, K. Millen and M. E. Hatten for discussions; R. Axel, J. Briscoe, N. Shah and L. Vosshall for comments on the manuscript; and K. MacArthur for help in its preparation. K.J.L. was an HHMI Fellow of the Life Sciences Research Foundation. The work of P.D. was supported by an NIH grant to A. Efstratiadis. T.M.J. was supported by grants from the NIH and is an Investigator of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas M. Jessell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, K., Dietrich, P. & Jessell, T. Genetic ablation reveals that the roof plate is essential for dorsal interneuron specification. Nature 403, 734–740 (2000). https://doi.org/10.1038/35001507

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35001507

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing