Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress
  • Published:

Nodal signalling in vertebrate development

Abstract

Communication between cells during early embryogenesis establishes the basic organization of the vertebrate body plan. Recent work suggests that a signalling pathway centering on Nodal, a transforming growth factor β-related signal, is responsible for many of the events that configure the vertebrate embryo. The activity of Nodal signals is regulated extracellularly by EGF-CFC cofactors and antagonists of the Lefty and Cerberus families of proteins, allowing precise control of mesoderm and endoderm formation, the positioning of the anterior–posterior axis, neural patterning and left–right axis specification.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation of Nodal signalling activities in frog, fish and mouse embryos before gastrulation.
Figure 2: The putative Nodal signalling pathway.

Similar content being viewed by others

References

  1. Harland, R. & Gerhart, J. Formation and function of Spemann's organizer. Annu. Rev. Cell Dev. Biol. 13, 611–667 (1997).

    Article  CAS  Google Scholar 

  2. Matzuk, M. M. et al. Functional analysis of activins during mammalian development. Nature 374, 354–356 (1995).

    Article  ADS  CAS  Google Scholar 

  3. Hawley, S. H. et al. Disruption of BMP signals in embryonic Xenopus ectoderm leads to direct neural induction. Genes Dev. 9, 2923–2935 (1995).

    Article  CAS  Google Scholar 

  4. Kessler, D. S. & Melton, D. A. Induction of dorsal mesoderm by soluble, mature Vg1 protein. Development 121, 2155–2164 (1995).

    CAS  PubMed  Google Scholar 

  5. Schulte-Merker, S., Smith, J. C. & Dale, L. Effects of truncated activin and FGF receptors and of follistatin on the inducing activities of BVg1 and activin: does activin play a role in mesoderm induction? EMBO J. 13, 3533–3541 (1994).

    Article  CAS  Google Scholar 

  6. Sun, B. I. et al. derriere: a TGF-β family member required for posterior development in Xenopus. Development 126, 1467 –1482 (1999).

    CAS  PubMed  Google Scholar 

  7. Dyson, S. & Gurdon, J. B. Activin signalling has a necessary function in Xenopus early development. Curr. Biol. 7, 81–84 (1997).

    Article  CAS  Google Scholar 

  8. Hemmati-Brivanlou, A. & Melton, D. A. A truncated activin receptor inhibits mesoderm induction and formation of axial structures in Xenopus embryos. Nature 359, 609– 614 (1992).

    Article  ADS  CAS  Google Scholar 

  9. Hemmati-Brivanlou, A. & Thomsen, G. H. Ventral mesodermal patterning in Xenopus embryos: expression patterns and activities of BMP-2 and BMP-4. Dev. Genet. 17, 78– 89 (1995).

    Article  CAS  Google Scholar 

  10. Meno, C. et al. Mouse Lefty2 and zebrafish antivin are feedback inhibitors of Nodal signaling during vertebrate gastrulation. Mol. Cell 4, 287–298 (1999).

    Article  CAS  Google Scholar 

  11. Joseph, E. M. & Melton, D. A. Mutant Vg1 ligands disrupt endoderm and mesoderm formation in Xenopus embryos. Development 125, 2677–2685 (1998).

    CAS  PubMed  Google Scholar 

  12. Zhou, X., Sasaki, H., Lowe, L., Hogan, B. L. & Kuehn, M. R. Nodal is a novel TGF-β-like gene expressed in the mouse node during gastrulation. Nature 361, 543–547 (1993).

    Article  ADS  CAS  Google Scholar 

  13. Conlon, F. L. et al. A primary requirement for nodal in the formation and maintenance of the primitive streak in the mouse. Development 120 , 1919–1928 (1994).

    CAS  Google Scholar 

  14. Smith, W. C., McKendry, R., Ribisi, S. J. & Harland, R. M. A nodal-related gene defines a physical and functional domain within the Spemann organizer. Cell 82, 37– 46 (1995).

    Article  CAS  Google Scholar 

  15. Jones, C. M., Kuehn, M. R., Hogan, B. L., Smith, J. C. & Wright, C. V. Nodal-related signals induce axial mesoderm and dorsalize mesoderm during gastrulation. Development 121, 3651–3662 (1995).

    CAS  Google Scholar 

  16. Levin, M., Johnson, R. L., Stern, C. D., Kuehn, M. & Tabin, C. A molecular pathway determining left–right asymmetry in chick embryogenesis. Cell 82, 803–814 (1995).

    Article  CAS  Google Scholar 

  17. Rebagliati, M. R., Toyama, R., Fricke, C., Haffter, P. & Dawid, I. B. Zebrafish nodal-related genes are implicated in axial patterning and establishing left–right asymmetry. Dev. Biol. 199, 261–272 ( 1998).

    Article  CAS  Google Scholar 

  18. Rebagliati, M. R., Toyama, R., Haffter, P. & Dawid, I. B. cyclops encodes a nodal-related factor involved in midline signaling. Proc. Natl Acad. Sci. USA 95, 9932– 9937 (1998).

    Article  ADS  CAS  Google Scholar 

  19. Erter, C. E., Solnica-Krezel, L. & Wright, C. V. Zebrafish nodal-related 2 encodes an early mesendodermal inducer signaling from the extraembryonic yolk syncytial layer. Dev. Biol. 204, 361–372 (1998).

    Article  CAS  Google Scholar 

  20. Sampath, K. et al. Induction of the zebrafish ventral brain and floorplate requires cyclops/nodal signalling. Nature 395, 185 –189 (1998).

    Article  ADS  CAS  Google Scholar 

  21. Feldman, B. et al. Zebrafish organizer development and germ-layer formation require nodal-related signals. Nature 395, 181– 185 (1998).

    Article  ADS  CAS  Google Scholar 

  22. Joseph, E. M. & Melton, D. A. Xnr4: a Xenopus nodal-related gene expressed in the Spemann organizer. Dev. Biol. 184, 367–372 (1997).

    Article  CAS  Google Scholar 

  23. Kimelman, D. & Griffin, K. J. Mesoderm induction: a postmodern view. Cell 94, 419–421 (1998).

    Article  CAS  Google Scholar 

  24. Zhang, J. et al. The role of maternal VegT in establishing the primary germ layers in Xenopus embryos. Cell 94, 515– 524 (1998).

    Article  CAS  Google Scholar 

  25. Kofron, M. et al. Mesoderm induction in Xenopus is a zygotic event regulated by maternal VegT via TGF-β growth factors. Development 126, 5759–5770 (1999).

    CAS  PubMed  Google Scholar 

  26. Yasuo, H. & Lemaire, P. A two-step model for the fate determination of presumptive endodermal blastomeres in Xenopus embryos. Curr. Biol. 9, 869–879 ( 1999).

    Article  CAS  Google Scholar 

  27. Clements, D., Friday, R. V. & Woodland, H. R. Mode of action of VegT in mesoderm and endoderm formation. Development 126, 4903– 4911 (1999).

    CAS  PubMed  Google Scholar 

  28. Shen, M. M., Wang, H. & Leder, P. A differential display strategy identifies Cryptic, a novel EGF-related gene expressed in the axial and lateral mesoderm during mouse gastrulation. Development 124, 429–442 (1997).

    CAS  PubMed  Google Scholar 

  29. Zhang, J., Talbot, W. S. & Schier, A. F. Positional cloning identifies zebrafish one-eyed pinhead as a permissive EGF-related ligand required during gastrulation. Cell 92, 241–251 (1998).

    Article  CAS  Google Scholar 

  30. Salomon, D. S., Bianco, C. & De Santis, M. Cripto: a novel epidermal growth factor (EGF)-related peptide in mammary gland development and neoplasia. Bioessays 21, 61–70 (1999).

    Article  CAS  Google Scholar 

  31. Gritsman, K. et al. The EGF-CFC protein one-eyed pinhead is essential for nodal signaling. Cell 97, 121– 132 (1999).

    Article  CAS  Google Scholar 

  32. Ding, J. et al. Cripto is required for correct orientation of the anterior–posterior axis in the mouse embryo. Nature 395, 702 –707 (1998).

    Article  ADS  CAS  Google Scholar 

  33. Schier, A. F., Neuhauss, S. C. F., Helde, K. A., Talbot, W. S. & Driever, W. The one-eyed pinhead gene functions in mesoderm and endoderm formation in zebrafish and interacts with no tail. Development 124, 327– 342 (1997).

    CAS  PubMed  Google Scholar 

  34. Strahle, U. et al. one-eyed pinhead is required for development of the ventral midline of the zebrafish (Danio rerio) neural tube. Genes Funct. 1, 131–148 ( 1997).

    Article  CAS  Google Scholar 

  35. Meno, C. et al. Left-right asymmetric expression of the TGF β-family member lefty in mouse embryos. Nature 381, 151–155 (1996).

    Article  ADS  CAS  Google Scholar 

  36. Meno, C. et al. Two closely-related left-right asymmetrically expressed genes, lefty-1 and lefty-2: their distinct expression domains, chromosomal linkage and direct neuralizing activity in Xenopus embryos. Genes Cell. 2, 513–524 ( 1997).

    Article  CAS  Google Scholar 

  37. Thisse, C. & Thisse, B. Antivin, a novel and divergent member of the TGFβ superfamily, negatively regulates mesoderm induction. Development 126, 229–240 (1999).

    CAS  PubMed  Google Scholar 

  38. Bisgrove, B. W., Essner, J. J. & Yost, H. J. Regulation of midline development by antagonism of lefty and nodal signaling. Development 126 , 3253–3262 (1999).

    CAS  PubMed  Google Scholar 

  39. Cheng, A., Thisse, B., Thisse, C. & Wright, C. V. E. The lefty-related factor Xatv acts as a feedback inhibitor of Nodal signaling in mesoderm induction and L–R axis development in Xenopus. Development (in the press).

  40. Bouwmeester, T., Kim, S., Sasai, Y., Lu, B. & De Robertis, E. M. Cerberus is a head-inducing secreted factor expressed in the anterior endoderm of Spemann's organizer. Nature 382, 595–601 (1996).

    Article  ADS  CAS  Google Scholar 

  41. Hsu, D. R., Economides, A. N., Wang, X., Eimon, P. M. & Harland, R. M. The Xenopus dorsalizing factor Gremlin identifies a novel family of secreted proteins that antagonize BMP activities. Mol. Cell 1, 673– 683 (1998).

    Article  CAS  Google Scholar 

  42. Piccolo, S. et al. The head inducer Cerberus is a multifunctional antagonist of Nodal, BMP and Wnt signals. Nature 397, 707–710 (1999).

    Article  ADS  CAS  Google Scholar 

  43. Rodriguez Esteban, C. et al. The novel Cer-like protein Caronte mediates the establishment of embryonic left–right asymmetry. Nature 401 , 243–251 (1999).

    Article  ADS  CAS  Google Scholar 

  44. Simpson, E. H. et al. The mouse Cer1 (Cerberus related or homologue ) gene is not required for anterior pattern formation. Dev. Biol. 213, 202–206 ( 1999).

    Article  CAS  Google Scholar 

  45. Massagué, J. TGF-β signal transduction. Annu. Rev. Biochem. 67, 753–791 (1998).

    Article  Google Scholar 

  46. Whitman, M. Smads and early developmental signaling by the TGFβ superfamily. Genes Dev. 12, 2445–2462 (1998).

    Article  CAS  Google Scholar 

  47. Waldrip, W. R., Bikoff, E. K., Hoodless, P. A., Wrana, J. L. & Robertson, E. J. Smad2 signaling in extraembryonic tissues determines anterior–posterior polarity of the early mouse embryo. Cell 92, 797–808 (1998).

    Article  CAS  Google Scholar 

  48. Weinstein, M. et al. Failure of egg cylinder elongation and mesoderm induction in mouse embryos lacking the tumor suppressor smad2. Proc. Natl Acad. Sci. USA 95, 9378–9383 (1998).

    Article  ADS  CAS  Google Scholar 

  49. Nomura, M. & Li, E. Smad2 role in mesoderm formation, left–right patterning and craniofacial development. Nature 393 , 786–790 (1998).

    Article  ADS  CAS  Google Scholar 

  50. Gu, Z. et al. The type I activin receptor ActRIB is required for egg cylinder organization and gastrulation in the mouse. Genes Dev. 12, 844–857 (1998).

    Article  CAS  Google Scholar 

  51. Song, J. et al. The type II activin receptors are essential for egg cylinder growth, gastrulation, and rostral head development in mice. Dev. Biol. 213, 157–169 ( 1999).

    Article  CAS  Google Scholar 

  52. Ramsdell, A. F. & Yost, H. J. Molecular mechanisms of vertebrate left–right development. Trends Genet. 14, 459–465 (1998).

    Article  CAS  Google Scholar 

  53. Yan, Y.-T. et al. Conserved requirement for EGF-CFC genes in vertebrate left–right axis formation. Genes Dev. 13, 2527–2537 (1999).

    Article  CAS  Google Scholar 

  54. Meno, C. et al. lefty-1 is required for left–right determination as a regulator of lefty-2 and nodal. Cell 94, 287– 297 (1998).

    Article  CAS  Google Scholar 

  55. Oh, S. P. & Li, E. The signaling pathway mediated by the type IIB activin receptor controls axial patterning and lateral asymmetry in the mouse. Genes Dev. 11, 1812– 1826 (1997).

    Article  CAS  Google Scholar 

  56. Gurdon, J. B., Dyson, S. & St Johnston, D. Cells' perception of position in a concentration gradient. Cell 95, 159–162 (1998).

    Article  CAS  Google Scholar 

  57. Gritsman, K., Talbot, W. S. & Schier, A. F. Nodal signaling patterns the organizer. Development (in the press).

  58. Jones, C. M., Armes, N. & Smith, J. C. Signalling by TGF-β family members: short-range effects of Xnr-2 and BMP-4 contrast with the long-range effects of activin. Curr. Biol. 6, 1468–1475 (1996).

    Article  CAS  Google Scholar 

  59. Hatta, K., Kimmel, C. B., Ho, R. K. & Walker, C. The cyclops mutation blocks specification of the floor plate of the zebrafish central nervous system. Nature 350, 339–341 (1991).

    Article  ADS  CAS  Google Scholar 

  60. Heisenberg, C. P. & Nüsslein-Volhard, C. The function of silberblick in the positioning of the eye anlage in the zebrafish embryo. Dev. Biol. 184, 85– 94 (1997).

    Article  CAS  Google Scholar 

  61. Matzuk, M. M., Kumar, T. R. & Bradley, A. Different phenotypes for mice deficient in either activins or activin receptor type II. Nature 374, 356–360 (1995).

    Article  ADS  CAS  Google Scholar 

  62. Sirard, C. et al. The tumor suppressor gene Smad4/Dpc4 is required for gastrulation and later for anterior development of the mouse embryo. Genes Dev. 12, 107–119 ( 1998).

    Article  CAS  Google Scholar 

  63. Yang, X., Li, C., Xu, X. & Deng, C. The tumor suppressor SMAD4/DPC4 is essential for epiblast proliferation and mesoderm induction in mice. Proc. Natl Acad. Sci. USA 95, 3667 –3672 (1998).

    Article  ADS  CAS  Google Scholar 

  64. Yokouchi, Y., Vogan, K. J., Pearse, R. V. 2nd & Tabin, C. J. Antagonistic signaling by Caronte, a novel Cerberus-related gene, establishes left–right asymmetric gene expression. Cell 98 , 573–583 (1999).

    Article  CAS  Google Scholar 

  65. Zhu, L. et al. Cerberus regulates left–right asymmetry of the embryonic head and heart. Curr. Biol. 9, 931– 938 (1999).

    Article  CAS  Google Scholar 

  66. Rodaway, A. et al. Induction of the mesendoderm in the zebrafish germ ring by yolk cell-derived TGF-β family signals and discrimination of mesoderm and endoderm by FGF. Development 126, 3067 –3078 (1999).

    CAS  PubMed  Google Scholar 

  67. Thisse, B., Wright, C. V. E. & Thisse, B. Activin- and Nodal-related factors control antero–posterior patterning of the zebrafish embryo. Nature 403, 425–428 (2000).

    Article  ADS  CAS  Google Scholar 

  68. Varlet, I., Collignon, J. & Robertson, E. J. nodal expression in the primitive endoderm is required for specification of the anterior axis during mouse gastrulation. Development 124, 1033– 1044 (1997).

    CAS  Google Scholar 

  69. Osada, S. I. & Wright, C. V. Xenopus nodal-related signaling is essential for mesendodermal patterning during early embryogenesis. Development 126, 3229–3240 (1999).

    CAS  PubMed  Google Scholar 

  70. Beddington, R. S. P. & Robertson, E. J. Anterior patterning in mouse. Trends Genet. 14, 277– 284 (1998).

    Article  CAS  Google Scholar 

  71. Schauerte, H. E. et al. Sonic hedgehog is not required for the induction of medial floor plate cells in the zebrafish. Development 125 , 2983–2993 (1998).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank C. Abate-Shen, R. Burdine, K. Gritsman, D. Kimelman, D. Reinberg, D. Rifkin, D. Ron, W. Talbot, E. White and A. Zychlinski for comments on the manuscript. Only a partial reference list is included owing to space constraints. The authors are supported by grants from the NIH (A.F.S., M.M.S.) and the US Army Breast Cancer Research Program (M.M.S.). A.F.S. is a Scholar of the McKnight Endowment Fund for Neuroscience.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander F. Schier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schier, A., Shen, M. Nodal signalling in vertebrate development. Nature 403, 385–389 (2000). https://doi.org/10.1038/35000126

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35000126

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing