Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Texturing of magnetic materials at high temperature by solidification in a magnetic field

Abstract

THE ability to impose a preferred orientation, or 'texture', on a crystalline material is important in many fields of materials science. In general, crystalline materials are more or less anisotropic in their properties, depending on their lattice structure, and texturing allows the most favourable direction (for example, for current flow or magnetic susceptibility) to be used in applications. Ferromagnetic materials can be textured by 'magnetic annealing'—the orientation of powdered material in a magnetic field, usually followed by a sintering step—but this must be done at temperatures below the material's Curie temperature. Here we present a new method of texturing materials that have a residual anisotropy in their magnetic susceptibility at high temperature, by solidification in a magnetic field. This one-step process, which may be called 'paramagnetic annealing', is demonstrated by application to the high-temperature superconductor YBa2Cu3O7.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Farrel, D. E. et al. Phys. Rev. B 36, 4025–4027 (1987).

    Article  Google Scholar 

  2. Livingston, J. D., Hart, H. R. Jr & Wolf, W. P. J. appl. Phys. 64, 5806–5808 (1988).

    Article  ADS  CAS  Google Scholar 

  3. Nakagawa, Y., Yamasaki, H., Obara, H. & Kimura, Y. Jap. J. appl. Phys. 28, L547–L550 (1989).

    Article  ADS  CAS  Google Scholar 

  4. Lees, M. et al. in Proc. Int. Conf. ‘From Modern Superconductivity Towards Applications’ (ed. Tournier, R. & Suryanarayanan, R.) 49–54 (IITT International Gournay-sur-Marne, 1990).

    Google Scholar 

  5. De Rango, P., Lees, M., Lejay, P., Sulpice, A. & Tournier, R. in Proc. Int. Conf. ‘From Modern Superconductivity Towards Applications’ (ed. Tournier, R. & Suryanarayanan, R.) 21–26 (IITT International, Gournay-sur-Marne, 1990).

    Google Scholar 

  6. Miljak, M., Collin, G. & Hamzic, A. J. Mag. Mater. 76 & 77, 609–611 (1988).

    Article  Google Scholar 

  7. Jin, S. et al. Appl. Phys. Lett. 52, 2074–2076 (1988).

    Article  ADS  CAS  Google Scholar 

  8. Salama, K., Selvamanickam, V., Gao, L. & Sun, K. Appl. Phys. Lett. 54, 2352–2354 (1989).

    Article  ADS  CAS  Google Scholar 

  9. Meng, R. L. et al. Nature 345, 326–328 (1990).

    Article  ADS  CAS  Google Scholar 

  10. Schulz, L. G. J. appl. Phys. 20, 1030 (1949).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Rango, P., Lees, M., Lejay, P. et al. Texturing of magnetic materials at high temperature by solidification in a magnetic field. Nature 349, 770–772 (1991). https://doi.org/10.1038/349770a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/349770a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing