Letter | Published:

Static strength and equation of state of rhenium at ultra-high pressures

Abstract

YIELDINGof materials is not understood well enough for detailed, quantitative predictions of strength to be possible, except by using semi-empirical models1,2. Studies of material strength at high pressures are therefore of fundamental as well as practical interest for determining the relationship between strength and other physical properties3–6. To this end, we have measured the shear stress τ supported by rhenium at pressures of up to 120 GPa, far higher than the pressures used in previous studies. Rhenium is of particular interest because it has the highest known bulk and shear moduli among metallic elements7–9. By using two independent methods of determining shear stress at room temperature, we find that rhenium is one of the strongest polycrystalline materials investigated so far, with shear stresses at high pressures reaching τ/μ≈0.004(±0.02) relative to the shear modulus μ. These values of τ/μ are nevertheless compatible with current theoretical expectations, indicating that the high strength of rhenium is not anomalous1,2,6.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Frost, H. J. & Ashby, M. F. Deformation Mechanism Maps (Pergamon, New York, 1982).

  2. 2

    Kelly, A. & Macmillan, N. H. Strong Solids 3rd edn (Oxford University Press, 1986).

  3. 3

    Meade, C. & Jeanloz, R. J. geophys. Res 93, 3261–3269 (1988).

  4. 4

    Meade, C. & Jeanloz, R. J. geophys. Res. 93, 3270–3274 (1988).

  5. 5

    Meade, C. & Jeanloz, R. Science 241, 1072–1074 (1988).

  6. 6

    Meade, C. & Jeanloz, R. Phys. Rev. B 41, 2532 (1990).

  7. 7

    Simmons, G. & Wang, H. Single Crystal Elastic Constants and Calculated Aggregate Properties (MIT Press, Cambridge, Massachusetts, 1971).

  8. 8

    Manghnani, M. H., Katahara, K. & Fisher, E. S. Phys. Rev. B 9, 1421–1431 (1974).

  9. 9

    Vohra, Y. K., Duclos, S. J. & Ruoff, A. L. Phys. Rev. B 36, 9790–9792 (1987).

  10. 10

    Mao, H. K., Bell, P. M., Dunn, K. J., Chrenko, R. M. & Devries, R. C. Rev. Sci. Instrum. 50, 1002–1009 (1979).

  11. 11

    Mao, H. K., Bell, P. M., Shaner, J. W. & Steinberg, J. J. appl. Phys. 49, 3276–3283 (1978).

  12. 12

    Meade, C. & Jeanloz, R. Rev. Sci. Instrum. 61, 2571–2580 (1990).

  13. 13

    Birch, F. J. geophys. Res. 83, 1257–1268 (1978).

  14. 14

    Jeanloz, R. J. geophys. Res. 94, 5873–5886 (1989).

  15. 15

    Ahrens, T. J. & Jeanloz, R. J. geophys. Res. 92, 10363–10375 (1987).

  16. 16

    Skriver, H. L. The LMTO Method (Springer, Berlin, 1984).

  17. 17

    Godwal, B. K. & Jeanloz, R. Phys. Rev. B 41, 7440–7445 (1990).

  18. 18

    Jeanloz, R. Geophys. Res. Lett. 8, 1219–1222 (1981).

  19. 19

    Wenk, H. R., ed., Preferred Orientation in Deformed Metals and Rocks. An Introduction to Modern Texture Analysis (Academic, Orlando, Florida, 1985).

  20. 20

    Wenk, H. R., Takeshita, T., Jeanloz, R. & Johnson, G. C. Geophys. Res. Lett. 15, 76–79 (1988).

  21. 21

    Sung, C. M., Goetze, C. & Mao, H. K. Rev. Sci. Instrum. 48, 1386–1391 (1977).

  22. 22

    Ruoff, A. L., Lo, H., Xia, H. & Vohra, Y. K. High Pressure Research (in the press).

  23. 23

    Marsh, S. P. (ed.) LASL Shock Hugoniot Data (University of California Press, Berkeley, California, 1980).

  24. 24

    Robie, R. A., Hemingway, B. S. & Fisher, J. R. U. S. geol. Surv. Bull. 1452 (1978).

  25. 25

    Bridgman, P. W. Proc. Am. Acad. Arts Sci. 71, 387–460 (1937).

  26. 26

    Bridgman, P. W. Proc. Am. Acad. Arts Sci. 82, 83–100 (1953).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.