Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Static strength and equation of state of rhenium at ultra-high pressures

Abstract

YIELDINGof materials is not understood well enough for detailed, quantitative predictions of strength to be possible, except by using semi-empirical models1,2. Studies of material strength at high pressures are therefore of fundamental as well as practical interest for determining the relationship between strength and other physical properties3–6. To this end, we have measured the shear stress τ supported by rhenium at pressures of up to 120 GPa, far higher than the pressures used in previous studies. Rhenium is of particular interest because it has the highest known bulk and shear moduli among metallic elements7–9. By using two independent methods of determining shear stress at room temperature, we find that rhenium is one of the strongest polycrystalline materials investigated so far, with shear stresses at high pressures reaching τ/μ≈0.004(±0.02) relative to the shear modulus μ. These values of τ/μ are nevertheless compatible with current theoretical expectations, indicating that the high strength of rhenium is not anomalous1,2,6.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Frost, H. J. & Ashby, M. F. Deformation Mechanism Maps (Pergamon, New York, 1982).

    Google Scholar 

  2. Kelly, A. & Macmillan, N. H. Strong Solids 3rd edn (Oxford University Press, 1986).

    Google Scholar 

  3. Meade, C. & Jeanloz, R. J. geophys. Res 93, 3261–3269 (1988).

    Article  ADS  CAS  Google Scholar 

  4. Meade, C. & Jeanloz, R. J. geophys. Res. 93, 3270–3274 (1988).

    Article  ADS  CAS  Google Scholar 

  5. Meade, C. & Jeanloz, R. Science 241, 1072–1074 (1988).

    Article  ADS  CAS  Google Scholar 

  6. Meade, C. & Jeanloz, R. Phys. Rev. B 41, 2532 (1990).

    Article  Google Scholar 

  7. Simmons, G. & Wang, H. Single Crystal Elastic Constants and Calculated Aggregate Properties (MIT Press, Cambridge, Massachusetts, 1971).

    Google Scholar 

  8. Manghnani, M. H., Katahara, K. & Fisher, E. S. Phys. Rev. B 9, 1421–1431 (1974).

    Article  ADS  CAS  Google Scholar 

  9. Vohra, Y. K., Duclos, S. J. & Ruoff, A. L. Phys. Rev. B 36, 9790–9792 (1987).

    Article  ADS  CAS  Google Scholar 

  10. Mao, H. K., Bell, P. M., Dunn, K. J., Chrenko, R. M. & Devries, R. C. Rev. Sci. Instrum. 50, 1002–1009 (1979).

    Article  ADS  CAS  Google Scholar 

  11. Mao, H. K., Bell, P. M., Shaner, J. W. & Steinberg, J. J. appl. Phys. 49, 3276–3283 (1978).

    Article  ADS  CAS  Google Scholar 

  12. Meade, C. & Jeanloz, R. Rev. Sci. Instrum. 61, 2571–2580 (1990).

    Article  ADS  CAS  Google Scholar 

  13. Birch, F. J. geophys. Res. 83, 1257–1268 (1978).

    Article  ADS  CAS  Google Scholar 

  14. Jeanloz, R. J. geophys. Res. 94, 5873–5886 (1989).

    Article  ADS  Google Scholar 

  15. Ahrens, T. J. & Jeanloz, R. J. geophys. Res. 92, 10363–10375 (1987).

    Article  ADS  Google Scholar 

  16. Skriver, H. L. The LMTO Method (Springer, Berlin, 1984).

    Book  Google Scholar 

  17. Godwal, B. K. & Jeanloz, R. Phys. Rev. B 41, 7440–7445 (1990).

    Article  ADS  CAS  Google Scholar 

  18. Jeanloz, R. Geophys. Res. Lett. 8, 1219–1222 (1981).

    Article  ADS  Google Scholar 

  19. Wenk, H. R., ed., Preferred Orientation in Deformed Metals and Rocks. An Introduction to Modern Texture Analysis (Academic, Orlando, Florida, 1985).

  20. Wenk, H. R., Takeshita, T., Jeanloz, R. & Johnson, G. C. Geophys. Res. Lett. 15, 76–79 (1988).

    Article  ADS  CAS  Google Scholar 

  21. Sung, C. M., Goetze, C. & Mao, H. K. Rev. Sci. Instrum. 48, 1386–1391 (1977).

    Article  ADS  CAS  Google Scholar 

  22. Ruoff, A. L., Lo, H., Xia, H. & Vohra, Y. K. High Pressure Research (in the press).

  23. Marsh, S. P. (ed.) LASL Shock Hugoniot Data (University of California Press, Berkeley, California, 1980).

  24. Robie, R. A., Hemingway, B. S. & Fisher, J. R. U. S. geol. Surv. Bull. 1452 (1978).

  25. Bridgman, P. W. Proc. Am. Acad. Arts Sci. 71, 387–460 (1937).

    Article  CAS  Google Scholar 

  26. Bridgman, P. W. Proc. Am. Acad. Arts Sci. 82, 83–100 (1953).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jeanloz, R., Godwal, B. & Meade, C. Static strength and equation of state of rhenium at ultra-high pressures. Nature 349, 687–689 (1991). https://doi.org/10.1038/349687a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/349687a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing