Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Shock-induced martensitic phase transformation of oriented graphite to diamond

Abstract

ONE important method of diamond synthesis is shock compression of graphite and other forms of carbon to high pressures and temperatures, and subsequent quenching to yield metastable diamond. This process, which occurs in microseconds, happens naturally in the impact of meteors1,2, within products of explosives3,4, and by explosive compression of powders5,6. A major unresolved issue is whether the shock-induced phase transition of graphite to diamond is martensitic or diffusive. The relation between the crystal structures of graphite and hexagonal diamond suggests that the phase transition should be fast and martensitic if shock pressure is applied parallel to the c axis (normal to the basal planes) of the graphite crystal structure. Here we report measurements of shock-wave histories for this transition whichshow that it occurs in ~ 10 ns. These results imply that the transformation from graphite to diamond is martensitic for temperatures substantially lower than the melting temperature. We observe an unexpectedly large sensitivity of kinetics to sample morphology. As well as answering questions concerning the physical nature of the transformation, our results are relevant to optimization of diamond yield in industrial synthetic methods.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hanneman, R. E., Strong, H. M. & Bundy, F. P. Science 155, 995–997 (1967).

    Article  ADS  CAS  Google Scholar 

  2. Clarke, R. S., Appleman, D. E. & Ross, D. R. Nature 291, 396–398 (1981).

    Article  ADS  CAS  Google Scholar 

  3. Greiner, N. R., Phillips, D. S., Johnson, J. D. & Volk, F. Nature 333, 440–442 (1988).

    Article  ADS  CAS  Google Scholar 

  4. Lyamkin, A. I. et al. Sov. Phys. Dokl. 33, 705–706 (1988).

    ADS  Google Scholar 

  5. Decarli, P. S. & Jamieson, J. C. Science 133, 1821–1822 (1961).

    Article  ADS  CAS  Google Scholar 

  6. Cowan, G. R., Dunnington, B. W. & Holtzman, A. H. US Patent No. 3,401,019 (1968).

  7. Kurdyumov, A. V., Ostrovskaya, N. F. & Pilyankevich, A. N. Sov. Powder Metall. Metal Ceram. 27, 32–37 (1988).

    Article  Google Scholar 

  8. Staver, A. M., Gubareva, N. V., Lyamkin, A. I. & Petrov, E. A. Sov. Combustion, Explosion and Shock Waves 20, 567–570 (1985).

    Article  Google Scholar 

  9. Bundy, F. P. & Kasper, J. S. J. chem. Phys. 46, 3437–3446 (1967).

    Article  ADS  CAS  Google Scholar 

  10. Williamson, R. L. J. appl. Phys. 68, 1287–1296 (1990).

    Article  ADS  Google Scholar 

  11. Coleburn, N. L. J. chem. Phys. 40, 71–77 (1964).

    Article  ADS  CAS  Google Scholar 

  12. Doran, D. G. J. appl. Phys. 34, 844–851 (1964).

    Article  ADS  Google Scholar 

  13. Pavlovskii, M. N. & Drakin, V. P. Sov. Phys. JETP Lett. 4, 116–118 (1966).

    ADS  Google Scholar 

  14. McQueen, R. G. & Marsh, S. P. in Behavior of Dense Media Under High Dynamic Pressures (Gordon and Breech, New York, 1968).

    Google Scholar 

  15. Gust, W. H. Phys. Rev. B 22, 4744–4756 (1980).

    Article  ADS  CAS  Google Scholar 

  16. Pyaternev, S. V., Pershin, S. V. & Dremin, A. N. Sov. Combustion, Explosion and Shock Waves 22, 756–761 (1986).

    Article  Google Scholar 

  17. Zeldovich, Ya. B. & Raizer, Yu. P. Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena, 750–756 (Academic, New York, 1967).

    Google Scholar 

  18. Gogulya, M. F. Sov. Combustion, Explosion and Shock Waves 25, 87–95 (1989).

    Article  Google Scholar 

  19. Hemsing, W. F. Rev. Sci. Instrum. 50, 73–78 (1979).

    Article  ADS  CAS  Google Scholar 

  20. Reynolds, W. N. Physical Properties of Graphite, 3–5 (Elsevier, Amsterdam, 1968).

    Google Scholar 

  21. Pavlovskii, M. N. Sov. Phys. Solid. St. 13, 741–742 (1971).

    Google Scholar 

  22. McQueen, R. G., Marsh, S. P. & Fritz, J. N. J. Geophys. Res. 72, 4999–5036 (1967).

    Article  ADS  Google Scholar 

  23. Morgan, W. C. Carbon 10, 73–79 (1972).

    Article  CAS  Google Scholar 

  24. van Thiel, M. & Ree, F. H. Int. J. Thermophysics 10, 227–236 (1989).

    Article  ADS  CAS  Google Scholar 

  25. Aleksandrov, I. V., Goncharov, A. F., Zisman, A. N. & Stishov, S. M. Sov. Phys. JETP 66, 384–390 (1987).

    Google Scholar 

  26. Touloukian, Y. S. (ed.) Thermophysical Properties of High Temperature Solid Materials Vol. 1, 394 (Macmillan, New York, 1967).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Erskine, D., Nellis, W. Shock-induced martensitic phase transformation of oriented graphite to diamond. Nature 349, 317–319 (1991). https://doi.org/10.1038/349317a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/349317a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing