Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Modelling viscous segregation in immiscible fluids using lattice-gas automata

Abstract

WHEN immiscible liquids with different viscosities are forced to flow through a channel, the more viscous liquid tends to concentrate in the centre. This process influences the flow of oil–water mixtures in pipelines1,2, the extrusion of polymers3, the flow of blood in small arteries4 and of magmas approaching the Earth's surface during a volcanic eruption5. Segregation occurs because it minimizes the pressure required to maintain a given flow rate6,7; there is still scant information, however, on the timescales and fluid configurations involved in the approach to the equilibrium state. Explicit solutions of the time-dependent Navier–Stokes equation using numerical (for example, finite-element3) methods are possible only for simple interface shapes. Here we use an alternative approach to the study of viscous segregation, involving immiscible lattice-gas automata. Two-dimensional calculations exhibit the expected segregation for a variety of starting configurations, and for an initially homogeneous emulsion the fluid must flow 50–100 times the channel width before most of the more viscous fluid reaches the channel centre. For constant flow rates, segregation occurs so as to progressively decrease the pressure.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Joseph, D. D., Nguyen, K. & Beavers, G. S. J. Fluid Mech. 141, 319–345 (1984).

    Article  ADS  Google Scholar 

  2. Charles, M. E. & Lilleleht, L. U. Can. J. chem. Engng 43, 110–116 (1965).

    Article  CAS  Google Scholar 

  3. Karagiannis, A., Mavridis, H., Hrymak, A. N. & Vlachopoulos, J. Polymer Engng Sci. 28, 982–988 (1988).

    Article  CAS  Google Scholar 

  4. Quemada, D. in Arteries and Arterial Blood Flow (ed. Rodkiewicz, C. M.) 91–105 (Springer-Verlag, New York, 1983).

    Google Scholar 

  5. Carrigan, C. R. & Eichelberger, J. C. Nature 343, 248–251 (1990).

    Article  ADS  Google Scholar 

  6. Joseph, D. D., Renardy, M. & Renardy, Y. J. Fluid Mech. 141, 309–317 (1984).

    Article  ADS  Google Scholar 

  7. Than, P. T., Rosso, F. & Joseph, D. D. Int. J. Engng Sci. 25, 189–204 (1987).

    Article  Google Scholar 

  8. Frisch, U., Hasslacher, B. & Pomeau, Y. Phys. Rev. Lett. 56, 1505–1508 (1986).

    Article  ADS  CAS  Google Scholar 

  9. Frisch, U. et al. Complex Systems 1, 648–707 (1987).

    Google Scholar 

  10. Rothman, D. H. & Keller, J. M. J. stat. Phys. 52, 1119–1127 (1988).

    Article  ADS  Google Scholar 

  11. Preziosi, L., Chen, K. & Joseph, D. D. J. Fluid Mech. 201, 323–356 (1989).

    Article  ADS  CAS  Google Scholar 

  12. Lim, H. A. Phys. Rev. A40, 968–980 (1989).

    Article  ADS  CAS  Google Scholar 

  13. Hayot, F. Complex Systems 1, 753–761 (1987).

    Google Scholar 

  14. Oliemans, R. V. A. & Ooms, G. in Multiphase Science and Technology Vol. 2 (eds Hewitt, G. F., Delhaye, J. M. & Zuber, N.) 427–472 (Hemisphere, Washington, DC, 1986).

    Book  Google Scholar 

  15. d'Humières, D., Lallemand, P. & Searby, G. Complex Systems 1, 633–647 (1987).

    MathSciNet  Google Scholar 

  16. Schechter, R. S. The Variational Method in Engineering, 135–148 (McGraw-Hill, New York, 1967).

    Google Scholar 

  17. Dahlburg, J. P., Montgomery, D. & Doolen, G. D. Phys. Rev. A36, 2471–2474 (1987).

    Article  ADS  CAS  Google Scholar 

  18. Gunstensen, A. K. & Rothman, D. H. Physica D (in the press).

  19. Chen, S., Chen, H. & Doolen, G. D. Complex Systems 3, 243–251 (1989).

    MathSciNet  Google Scholar 

  20. Somers, J. A. & Rem, P. C. Cellular Automata and Modeling of Complex Physical Systems (eds Manneville, P., Boccara, N., Vichniac, G. Y. & Bidaux, R.) 161–177 (Springer, Berlin, 1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stockman, H., Stockmant, C. & Carrigan, C. Modelling viscous segregation in immiscible fluids using lattice-gas automata. Nature 348, 523–525 (1990). https://doi.org/10.1038/348523a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/348523a0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing