Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Evidence from chronosequence studies for a low carbon-storage potential of soils

Abstract

OVER most of the Earth's land surface, the amount of carbon stored in soil organic matter exceeds by a factor of two or three the amount stored in living vegetation. This pool of soil carbon is large (1.5 × 1018 g)1,2 and plays a dynamic part in the geochemical carbon cycle. Prentice and Fung3 have suggested that terrestrial vegetation and soils would act as a large sink for atmospheric carbon dioxide if its concentration were twice the present level. Here I use data from chronosequence studies to show that the production of refractory humus substances in soils sequesters only 0.4 × 1015 g C yr−1 from the atmosphere, accounting for just 0.7% of terrestrial net primary production. Moreover, agricultural practices tend, on balance, to cause a release of soil carbon to the atmosphere4,5. Thus if the terrestrial biosphere is indeed to act as a carbon sink under future elevated levels of carbon dioxide, this would be more likely to be the result of changes in the distribution and biomass of terrestrial vegetation than of changes in the accumulation of soil organic matter.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Schlesinger, W. H. A. Rev. ecol. Syst. 8, 51–81 (1977).

    Article  CAS  Google Scholar 

  2. Post, W. M., Emanuel, W. R., Zinke, P. J. & Stangenberger, A. G. Nature 298, 156–159 (1982).

    Article  ADS  CAS  Google Scholar 

  3. Prentice, K. C. & Fung, I. Y. Nature 346, 48–51 (1990).

    Article  ADS  Google Scholar 

  4. Wilson, A. T. Nature 273, 40–41 (1978).

    Article  ADS  CAS  Google Scholar 

  5. Schlesinger, W. H. in The Role of Terrestrial Vegetation in the Global Carbon Cycle (ed. Woodwell, G. M.) 111–127 (Wiley, New York, 1984).

    Google Scholar 

  6. Campbell, C. A., Paul, E. A., Rennie, D. A. & McCallum, K. J. Soil Sci. 104, 217–224 (1967).

    Article  ADS  CAS  Google Scholar 

  7. Birkeland, P. W. Soils and geomorphology (Oxford University Press, 1984).

    Google Scholar 

  8. Armentano, T. V. & Menges, E. S. J. Ecol. 74, 755–774 (1986).

    Article  CAS  Google Scholar 

  9. Matthews, E. & Fung, I. Global biogeochem. Cycles 1, 61–86 (1987).

    Article  ADS  CAS  Google Scholar 

  10. Solomon, A. M., Trabalka, J. T., Reichle, D. E. & Voorhees, L. O. in Atmospheric Carbon Dioxide and the Global Carbon Cycle (ed. Trabalka, J. T.) 1–13 (U.S. Department of Energy, Washington, DC, 1985).

    Google Scholar 

  11. Schlesinger, W. H. Soil Sci. 133, 247–255 (1982).

    Article  ADS  CAS  Google Scholar 

  12. Berner, R. A. Am. J. Sci. 282, 451–473 (1982).

    Article  ADS  CAS  Google Scholar 

  13. Schlesinger, W. H. & Melack, J. M. Tellus 33, 172–187 (1981).

    Article  ADS  CAS  Google Scholar 

  14. Gardner, W. S. & Menzel, D. W. Geochim. cosmochim. Acta 38, 813–822 (1974).

    Article  ADS  CAS  Google Scholar 

  15. Flint, R. F. Glacial and Quaternary Geology (Wiley, New York, 1971).

    Google Scholar 

  16. Protz, R., Ross, G. J., Martini, I. P. & Terasmae, J. Can. J. Soil Sci. 64, 31–49 (1984).

    Article  CAS  Google Scholar 

  17. Protz, R., Ross, G. J., Shipitalo, M. J. & Terasmae, J. Can. J. Soil Sci. 68, 287–305 (1988).

    Article  Google Scholar 

  18. Tans, P. P., Fung, I. Y. & Takahashi, T. Science 247, 1431–1438 (1990).

    Article  ADS  CAS  Google Scholar 

  19. Billings, W. D., Luken, J. O., Mortensen, D. A. & Peterson, K. M. Oecologia 58, 286–289 (1982).

    Article  ADS  Google Scholar 

  20. Schleser, G. H. Z Naturf. 37a, 287–291 (1982).

    ADS  CAS  Google Scholar 

  21. Van Cleve, K., Oechel, W. C. & Horn, J. L. Can. J. Forest Res. (in the press).

  22. Emanuel, W. R., Shugart, H. H. & Stevenson, M. P. Clim. Change 7, 29–43 (1985); 7, 457–460 (1985).

    Article  ADS  Google Scholar 

  23. Prince, A. L., Toth, S. J. & Blair, A. W. Soil Sci. 46, 379–389 (1938).

    Article  ADS  Google Scholar 

  24. Lugo, A. L., Sanchez, M. J. & Brown, S. Plant Soil 96, 185–196 (1986).

    Article  CAS  Google Scholar 

  25. Gebhardt, M. R., Daniel, T. C., Schweizer, E. E. & Allmaras, R. R. Science 230, 625–630 (1985).

    Article  ADS  CAS  Google Scholar 

  26. Hart, J. F. Ann. Ass. Am. Geogr. 58, 417–440 (1968).

    Article  Google Scholar 

  27. Sollins, P., Spycher, G. & Topik, C. Ecology 64, 1273–1282 (1983).

    Article  Google Scholar 

  28. Syers, J. K., Adams, J. A. & Walker, T. W. J. Soil Sci. 21, 146–153 (1970).

    Article  CAS  Google Scholar 

  29. Delcouit, H. R. & Harris, & Harris, W. F. Science 210, 321–323 (1980).

    Article  ADS  Google Scholar 

  30. Houghton, R. A. et al. Tellus B39, 122–139 (1987).

    Article  Google Scholar 

  31. Schiffman, P. M. & Johnson, W. C. Can. J. Forest Res. 19, 69–78 (1989).

    Article  Google Scholar 

  32. Evans, L. J. & Cameron, B. H. Can. J. Soil Sci. 59, 203–210 (1979).

    Article  CAS  Google Scholar 

  33. Bockheim, J. G. Arctic Alp. Res. 11, 289–306 (1979).

    Article  CAS  Google Scholar 

  34. Birkeland, P. W. Arctic Alp. Res. 10, 733–747 (1978).

    Article  Google Scholar 

  35. Chandler, R. Soil Sci. Soc. Am. Proc. 7, 454–459 (1942).

    Article  Google Scholar 

  36. Tezuka, Y. Jap. J. Bot. 17, 371–402 (1961).

    Google Scholar 

  37. Bilzi, A. F. & Ciolkosz, E. J. Soil Sci. Soc. Am. J. 41, 122–127 (1977).

    Article  ADS  CAS  Google Scholar 

  38. Franzmeir, D. P., Whiteside, E. P. & Mortland, M. M. Mich. Agric. expl. Station Bull. 46, 37–57 (1963).

    Google Scholar 

  39. Burges, A. & Drover, D. P. Aust. J. Bot. 1, 83–94 (1953).

    Article  CAS  Google Scholar 

  40. Bowman, G. M. Aust. J. Soil Res. 27, 607–628 (1989).

    Article  Google Scholar 

  41. Bowman, G. M. Proc. R. Soc. Tasmania 121, 75–88 (1987).

    Google Scholar 

  42. Birkeland, P. W. Geoderma 34, 115–134 (1984).

    Article  ADS  Google Scholar 

  43. Vitousek, P. M., Van Cleve, K., Balakrishnan, N. & Mueller-Dombois, D. Biotropica 15, 268–274 (1983).

    Article  Google Scholar 

  44. Harris, S. A. in Paleopedology (ed. Yaalon, D. H.) 191–209 (Int. Soc. Soil Sci., Jerusalem, 1971).

    Google Scholar 

  45. Lajtha, K. & Schlesinger, W. H. Ecology 69, 24–39 (1988).

    Article  CAS  Google Scholar 

  46. Crocker, R. L. & Dickson, B. A. J. Ecol. 45, 169–185 (1957).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schlesinger, W. Evidence from chronosequence studies for a low carbon-storage potential of soils. Nature 348, 232–234 (1990). https://doi.org/10.1038/348232a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/348232a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing