Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Uranium-mineralized micro-organisms associated with uraniferous hydrocarbons in southwest Scotland

Abstract

THE ability of microorganisms such as bacteria and fungi to concentrate uranium and other metals from solution has long been recognized (see, for example, refs 1–10), and has previously been applied to the economic recovery of metals from natural and industrial waste waters10–13. This phenomenon is also important in the risk assessment of radioactive waste disposal, as the mobility of microbes may either enhance or retard radionuclide migration14. Although microbiological activity has been thought to influence the deposition or remobilization of uranium in natural deposits15,16, there have been only a few direct observations of naturally mineralized microbial structures17,18. During recent investigations of uranium mobilization from mineralized rocks in southwest Scotland, we observed the presence of uranium-mineral-ized structures attributable to the activity of filamentous microor-ganisms. Unlike previous accounts of either artificially stained1,3,6,19 or naturally mineralized microbes17,18, the structures we describe display polymetallic mineralization, with a complex relationship between the metal species concentrated and its location in the microorganism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Beveridge, T. J. & Murray, R. G. E. J. Bact. 127, 1502–1518 (1976).

    CAS  PubMed  Google Scholar 

  2. Hawker, L. E. & Linton, A. H. Microorganisms (Arnold, London, 1979).

    Google Scholar 

  3. Beveridge, T. J. & Murray, R. G. E. J. Bact. 141, 876–887 (1980).

    CAS  Google Scholar 

  4. Doyle, R. J., Matthews, T. H. & Streips, U. N. J. Bact. 143, 471–480 (1980).

    CAS  PubMed  Google Scholar 

  5. Disnar, J-R., Geochim. cosmochim. Acta 45, 363–379 (1981).

    Article  ADS  CAS  Google Scholar 

  6. Beveridge, T. J., Meloche, J. D., Fyfe, W. S. & Murray, R. G. E. Appl. envir. Microbiol. 45, 1094–1108 (1983).

    CAS  Google Scholar 

  7. Ferris, F. G. & Beveridge, T. J. Bioscience 35, 172–177 (1985).

    Article  Google Scholar 

  8. Beveridge, T. J. Biotechnol. Bioengng Symp. 16, 127–139 (1986).

    CAS  Google Scholar 

  9. Nakajima, A. & Sakaguchi, T. Appl. Microbiol. Biotechnol. 24, 59–64 (1986).

    CAS  Google Scholar 

  10. Eccles, H. & Hunt, S. Immobilisation of Ions by Bio-Sorption (Ellis Horwood, London, 1986).

    Google Scholar 

  11. Horikoshi, T., Nakajima, A. & Skaguchi, T. J. Fermentation Technol. 57, 191–194 (1979).

    CAS  Google Scholar 

  12. Lorenz, M. G. & Krumbein, W. E. Appl. Microbiol. Biotechnol. 21, 374–377 (1985).

    Article  CAS  Google Scholar 

  13. Volesky, B. Biotechnol. Bioengng Symp. 16, 121–126 (1986).

    CAS  Google Scholar 

  14. West, J. M., McKinley, I. G. & Chapman, N. A. Radioactive Waste Management Nucl. Fuel Cycle 3, 1–15 (1982).

    CAS  Google Scholar 

  15. Magne, R., Berthelin, J. R. & Dommergues, Y. Proc. Symp. Formation of Uranium Ore Deposits, 73–88 (IAEA, Vienna, 1974).

    Google Scholar 

  16. Landais, P. Terra Nova 1, 163–171 (1989).

    Article  ADS  Google Scholar 

  17. Capus, G. & Munier, C. C.r. hebd. Séanc. Acad. Sci., Paris 287, 191–194 (1978).

    Google Scholar 

  18. Degens, E. T. & Venugopalen, I. Nature 298, 262–264 (1982).

    Article  ADS  Google Scholar 

  19. Beveridge, T. J. & Fyfe, W. S. Can. J. Earth Sci. 22, 1893–1898 (1985).

    Article  ADS  CAS  Google Scholar 

  20. Halliday, A. N., Stephens, W. E. & Harmon, R. S. J. geol. Soc. Lond. 137, 329–348 (1980).

    Article  CAS  Google Scholar 

  21. Miller, J. M. & Taylor, K. Bull. Geol. Surv. G.B. 25, 1–18 (1966).

    CAS  Google Scholar 

  22. Basham, I. R., Milodowski, A. E., Hyslop, E. K. & Pearce, J. M. Brit. geol. Surv. Fluid Processes Research Group Tech. Rep. WE/89/56 (Brit. geol. Surv., Keyworth, 1989).

  23. Roberts, P. D., Ball, T. K., Hooker, P. J. & Milodowski, A. E. Mater. Res. Soc. Symp. Proc. 127 (eds Lutze, W. & Ewing, R. C.) 933–940 (MRS, Pittsburgh, 1989).

    Google Scholar 

  24. Côme, B. & Chapman, N. A. (eds) Natural Analogue Working Group, Rep. CEC EUR 10315-EN (CEC, Luxembourg, 1986).

  25. Basham, I. R. Econ. Geol. 76, 994–997 (1981).

    Article  Google Scholar 

  26. Kleeman, J. D. & Lovering, J. F. Atom. Energy Aust., 10, 3–8 (1967).

    CAS  Google Scholar 

  27. Basham, I. R., Ball, T. K., Beddoe-Stephens, B. & Michie, U. McL. Proc. Symp. Uranium Exploration Methods 385–397 (OECD/NEA, Paris, 1982).

    Google Scholar 

  28. Braithwaite, R. S. W. & Knight, J. R. Miner. Mag. 54, 129–131 (1990).

    Article  CAS  Google Scholar 

  29. Parnell, J. Uranium 4, 197–218 (1988).

    CAS  Google Scholar 

  30. Eakin, P. A. J. geol. Soc. Lond. 146, 663–673 (1989).

    Article  CAS  Google Scholar 

  31. Buchanan, R. E. & Gibbons, N. E. (eds) Bergey's Manual of Determinative Bacteriology. 8th edn (Williams & Wilkins, Baltimore, 1975).

  32. Palache, C., Berman, H. & Frondel, C. Dana's System of Mineralogy, Vol. 2 (Wiley, New York, 1951).

    Google Scholar 

  33. James, A. M. Chem. Soc. Rev. 8, 389–418 (1979).

    Article  CAS  Google Scholar 

  34. James, A. M. Adv. Colloid Interface Sci. 15, 171–211 (1982).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Milodowski, A., West, J., Pearce, J. et al. Uranium-mineralized micro-organisms associated with uraniferous hydrocarbons in southwest Scotland. Nature 347, 465–467 (1990). https://doi.org/10.1038/347465a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/347465a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing