Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Isotropic cellular automaton for modelling excitable media

Abstract

EXCITABLE media, exemplified by the chemical system of the Belousov–Zhabotinsky (BZ) reaction, are often modelled theoretically through the integration of sets of partial differential equations that describe their dynamics. An alternative approach is to use cellular automata1–4, which sacrifice insight into the detailed physical mechanisms for the benefit of being able to reproduce the observed patterns of behaviour at low computational cost. But the cellular automata used in previous work have been anisotropic (mainly square or hexagonal), leading to the problem that this anisotropy tends to be propagated into the patterns produced. Here we describe a means of generating isotropic cellular automata, which are able to reproduce a wide range of observed modes of behaviour ranging from spiral-type BZ patterns to structures reminiscent of turbulence.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Madore, B. F. & Freedman, W. L. Science 222, 615–616 (1983).

    Article  ADS  CAS  Google Scholar 

  2. Zykov, V. S. & Mikhailov, A. S. Soviet Phys. Dokl. 31, 51–52 (1988).

    ADS  Google Scholar 

  3. Winfree, A. T., Winfree, E. M. & Seifert, H. Physica D17, 109–115 (1985).

    MathSciNet  Google Scholar 

  4. Gerhardt, M. & Schuster, H. Physica D36, 209–221 (1989).

    MathSciNet  CAS  Google Scholar 

  5. Hardy, J., Pomeau, Y. & de Pazzis, O. J. math. Phys. 14, 1746–1759 (1973).

    Article  ADS  Google Scholar 

  6. Frisch, U., Hasslacher, B. & Pomeau, Y. Phys. Rev. Lett. 56, 1505–1508 (1986).

    Article  ADS  CAS  Google Scholar 

  7. d Humières, D., Lallemand, P. & Frisch, U. Eumphys. Lett. 2, 291–297 (1986).

    Article  ADS  Google Scholar 

  8. Rivet, J. P., Henon, M., Frisch, U. & d'Humières, D. Europhys. Lett. 7, 231–236 (1988).

    Article  ADS  Google Scholar 

  9. Zykov, V. S. Simulations of Wave Processes in Excitable Media (Manchester University Press, 1988).

    Google Scholar 

  10. Holden, A. V., Markus, M. & Othmer, H. G. (eds) Nonlinear Wave Processes in Excitable Media (Plenum, London, in the press).

  11. Hodgkin, A. L. & Huxley, A.F. J. Physiol. 117, 500–544 (1952).

    Article  CAS  Google Scholar 

  12. Medvinsky, A. B., Panfilov, A. V. & Pertsov, A. M. in Self-Organization (ed. Krinsky, V. I.) 195–199 (Springer, Berlin, 1984).

    Google Scholar 

  13. Koroleva, V. I. & Bures, J. Brain. Res. 173, 209–215 (1979).

    Article  CAS  Google Scholar 

  14. Gorelova, N. A. & Bures, J. J. Neurobiol. 14, 353–363 (1983).

    Article  CAS  Google Scholar 

  15. Hara, K., Tydeman, P. & Kirschner, M. Proc. natn. Acad. Sci. U.S.A. 77, 462–466 (1980).

    Article  ADS  CAS  Google Scholar 

  16. Winfree, A. T. Science 181, 937–939 (1973).

    Article  ADS  CAS  Google Scholar 

  17. Agladze, K. I. & Krinsky, V. I. Nature 296, 424–426 (1982).

    Article  ADS  CAS  Google Scholar 

  18. Welsh, B. J., Gomatam, J. & Burgess, A. E. Nature 304, 611–614 (1983).

    Article  ADS  Google Scholar 

  19. Sevcikova, H. & Marek, M. Physica D39, 15–21 (1989).

    MathSciNet  CAS  Google Scholar 

  20. Keener, J. P. & Tyson, J. J. Physica D21, 307–324 (1986).

    ADS  Google Scholar 

  21. Müller, S. C., Plesser, Th. & Hess, B. Physica D24, 71–86 (1987).

    Google Scholar 

  22. Jahnke, W., Henze, C. & Winfree, A. T. Nature 336, 662–665 (1988).

    Article  ADS  CAS  Google Scholar 

  23. Foerster, P., Müller, S. C. & Hess, B. Proc. natn. Acad. Sci U.S.A. 86, 6831–6834 (1989).

    Article  ADS  CAS  Google Scholar 

  24. Tomchik, K. J. & Devreotes, P. N. Science 212, 443–446 (1981).

    Article  ADS  CAS  Google Scholar 

  25. Carey, A. B., Giles, R. H. Jr & McLean, R. G., Am. J. trop. Med. Hyg. 27, 573–580 (1978).

    Article  CAS  Google Scholar 

  26. Murrey, J. D., Stanley, E. A. & Brown, D. L. Proc. R. Soc. B229, 111–150 (1986).

    ADS  Google Scholar 

  27. Schulman, L. S. & Seiden, P. E. Science 233, 425–431 (1986).

    Article  ADS  CAS  Google Scholar 

  28. Nandapurkar, P. J. & Winfree, A. T. Physica D29, 69–83 (1987); D35, 277–288 (1989).

    MathSciNet  Google Scholar 

  29. Field, R. J. & Noyes, R. M. J. chem. Phys. 60, 1877–1884 (1974).

    Article  ADS  CAS  Google Scholar 

  30. Martiel, J-L. & Goldbeter, A. Biophys. J. 52, 807–828 (1987).

    Article  CAS  Google Scholar 

  31. Wolf, A., Swift, J. B., Swinney, H. G. & Vastano, J. A. Physica D16, 285–317 (1985).

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Markus, M., Hess, B. Isotropic cellular automaton for modelling excitable media. Nature 347, 56–58 (1990). https://doi.org/10.1038/347056a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/347056a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing